non-abelian, supersoluble, monomial
Aliases: C3.1C3≀S3, (C3×He3)⋊1S3, (C3×He3)⋊1C6, C33.1(C3×S3), He3⋊5S3⋊1C3, C3.3(C33⋊C6), C32.24He3⋊1C2, C32.25(C32⋊C6), SmallGroup(486,4)
Series: Derived ►Chief ►Lower central ►Upper central
C3×He3 — C3.C3≀S3 |
Generators and relations for C3.C3≀S3
G = < a,b,c,d,e | a3=b3=c3=d3=e6=1, ab=ba, ac=ca, ad=da, eae-1=a-1, bc=cb, dbd-1=bc-1, ebe-1=ab-1c, cd=dc, ce=ec, ede-1=b-1d-1 >
Subgroups: 704 in 73 conjugacy classes, 10 normal (all characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C3×S3, C3⋊S3, C3×C6, C3×C9, He3, C33, C33, C32⋊C6, He3⋊C2, S3×C32, C3×C3⋊S3, C32⋊C9, C3×He3, C3×C32⋊C6, He3⋊5S3, C32.24He3, C3.C3≀S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C32⋊C6, C3≀S3, C33⋊C6, C3.C3≀S3
(1 29 42)(2 37 30)(3 25 38)(4 39 26)(5 27 40)(6 41 28)(7 36 18)(8 13 31)(9 32 14)(10 15 33)(11 34 16)(12 17 35)(19 50 44)(20 45 51)(21 52 46)(22 47 53)(23 54 48)(24 43 49)
(2 37 30)(3 25 38)(4 26 39)(5 40 27)(8 13 31)(9 32 14)(10 33 15)(11 16 34)(19 50 44)(20 45 51)(21 46 52)(22 53 47)
(1 29 42)(2 30 37)(3 25 38)(4 26 39)(5 27 40)(6 28 41)(7 36 18)(8 31 13)(9 32 14)(10 33 15)(11 34 16)(12 35 17)(19 44 50)(20 45 51)(21 46 52)(22 47 53)(23 48 54)(24 43 49)
(1 34 51)(2 52 12)(3 36 22)(4 54 31)(5 9 49)(6 19 33)(7 53 38)(8 39 48)(10 41 50)(11 45 42)(13 26 23)(14 43 40)(15 28 44)(16 20 29)(17 37 46)(18 47 25)(21 35 30)(24 27 32)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)
G:=sub<Sym(54)| (1,29,42)(2,37,30)(3,25,38)(4,39,26)(5,27,40)(6,41,28)(7,36,18)(8,13,31)(9,32,14)(10,15,33)(11,34,16)(12,17,35)(19,50,44)(20,45,51)(21,52,46)(22,47,53)(23,54,48)(24,43,49), (2,37,30)(3,25,38)(4,26,39)(5,40,27)(8,13,31)(9,32,14)(10,33,15)(11,16,34)(19,50,44)(20,45,51)(21,46,52)(22,53,47), (1,29,42)(2,30,37)(3,25,38)(4,26,39)(5,27,40)(6,28,41)(7,36,18)(8,31,13)(9,32,14)(10,33,15)(11,34,16)(12,35,17)(19,44,50)(20,45,51)(21,46,52)(22,47,53)(23,48,54)(24,43,49), (1,34,51)(2,52,12)(3,36,22)(4,54,31)(5,9,49)(6,19,33)(7,53,38)(8,39,48)(10,41,50)(11,45,42)(13,26,23)(14,43,40)(15,28,44)(16,20,29)(17,37,46)(18,47,25)(21,35,30)(24,27,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)>;
G:=Group( (1,29,42)(2,37,30)(3,25,38)(4,39,26)(5,27,40)(6,41,28)(7,36,18)(8,13,31)(9,32,14)(10,15,33)(11,34,16)(12,17,35)(19,50,44)(20,45,51)(21,52,46)(22,47,53)(23,54,48)(24,43,49), (2,37,30)(3,25,38)(4,26,39)(5,40,27)(8,13,31)(9,32,14)(10,33,15)(11,16,34)(19,50,44)(20,45,51)(21,46,52)(22,53,47), (1,29,42)(2,30,37)(3,25,38)(4,26,39)(5,27,40)(6,28,41)(7,36,18)(8,31,13)(9,32,14)(10,33,15)(11,34,16)(12,35,17)(19,44,50)(20,45,51)(21,46,52)(22,47,53)(23,48,54)(24,43,49), (1,34,51)(2,52,12)(3,36,22)(4,54,31)(5,9,49)(6,19,33)(7,53,38)(8,39,48)(10,41,50)(11,45,42)(13,26,23)(14,43,40)(15,28,44)(16,20,29)(17,37,46)(18,47,25)(21,35,30)(24,27,32), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54) );
G=PermutationGroup([[(1,29,42),(2,37,30),(3,25,38),(4,39,26),(5,27,40),(6,41,28),(7,36,18),(8,13,31),(9,32,14),(10,15,33),(11,34,16),(12,17,35),(19,50,44),(20,45,51),(21,52,46),(22,47,53),(23,54,48),(24,43,49)], [(2,37,30),(3,25,38),(4,26,39),(5,40,27),(8,13,31),(9,32,14),(10,33,15),(11,16,34),(19,50,44),(20,45,51),(21,46,52),(22,53,47)], [(1,29,42),(2,30,37),(3,25,38),(4,26,39),(5,27,40),(6,28,41),(7,36,18),(8,31,13),(9,32,14),(10,33,15),(11,34,16),(12,35,17),(19,44,50),(20,45,51),(21,46,52),(22,47,53),(23,48,54),(24,43,49)], [(1,34,51),(2,52,12),(3,36,22),(4,54,31),(5,9,49),(6,19,33),(7,53,38),(8,39,48),(10,41,50),(11,45,42),(13,26,23),(14,43,40),(15,28,44),(16,20,29),(17,37,46),(18,47,25),(21,35,30),(24,27,32)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54)]])
31 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3K | 3L | 3M | 3N | 3O | 6A | ··· | 6H | 9A | ··· | 9F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 9 | ··· | 9 | 18 | 18 | 18 | 18 | 27 | ··· | 27 | 18 | ··· | 18 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 6 | 6 | 6 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 | C3≀S3 | C32⋊C6 | C33⋊C6 | C3.C3≀S3 |
kernel | C3.C3≀S3 | C32.24He3 | He3⋊5S3 | C3×He3 | C3×He3 | C33 | C3 | C32 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 12 | 1 | 3 | 6 |
Matrix representation of C3.C3≀S3 ►in GL6(𝔽19)
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 17 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 17 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0],[0,0,0,0,17,0,0,0,0,0,0,5,0,0,0,17,0,0,0,17,0,0,0,0,0,0,5,0,0,0,17,0,0,0,0,0] >;
C3.C3≀S3 in GAP, Magma, Sage, TeX
C_3.C_3\wr S_3
% in TeX
G:=Group("C3.C3wrS3");
// GroupNames label
G:=SmallGroup(486,4);
// by ID
G=gap.SmallGroup(486,4);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,218,224,4755,873,735,3244]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^6=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=a*b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*d^-1>;
// generators/relations