Extensions 1→N→G→Q→1 with N=C3 and Q=C32⋊C18

Direct product G=N×Q with N=C3 and Q=C32⋊C18

Semidirect products G=N:Q with N=C3 and Q=C32⋊C18
extensionφ:Q→Aut NdρLabelID
C3⋊(C32⋊C18) = C33⋊C18φ: C32⋊C18/C32⋊C9C2 ⊆ Aut C354C3:(C3^2:C18)486,136

Non-split extensions G=N.Q with N=C3 and Q=C32⋊C18
extensionφ:Q→Aut NdρLabelID
C3.1(C32⋊C18) = C9⋊S3⋊C9φ: C32⋊C18/C32⋊C9C2 ⊆ Aut C354C3.1(C3^2:C18)486,3
C3.2(C32⋊C18) = C331C18φ: C32⋊C18/C32⋊C9C2 ⊆ Aut C3186C3.2(C3^2:C18)486,18
C3.3(C32⋊C18) = (C3×C9)⋊C18φ: C32⋊C18/C32⋊C9C2 ⊆ Aut C3546C3.3(C3^2:C18)486,20
C3.4(C32⋊C18) = C9⋊S33C9φ: C32⋊C18/C32⋊C9C2 ⊆ Aut C3546C3.4(C3^2:C18)486,22
C3.5(C32⋊C18) = C32⋊C54central extension (φ=1)546C3.5(C3^2:C18)486,16
C3.6(C32⋊C18) = He3⋊C18central stem extension (φ=1)81C3.6(C3^2:C18)486,24
C3.7(C32⋊C18) = He3.C18central stem extension (φ=1)813C3.7(C3^2:C18)486,26
C3.8(C32⋊C18) = He3.2C18central stem extension (φ=1)813C3.8(C3^2:C18)486,28