Copied to
clipboard

G = He3.C18order 486 = 2·35

1st non-split extension by He3 of C18 acting via C18/C3=C6

non-abelian, supersoluble, monomial

Aliases: He3.1C18, (C3xC27):2S3, C9oHe3.1C6, C32.2(S3xC9), C9.5He3:3C2, C9.7(C32:C6), He3:C2.1C9, C3.7(C32:C18), He3.4C6.1C3, (C3xC9).23(C3xS3), SmallGroup(486,26)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3.C18
C1C3C32He3C9oHe3C9.5He3 — He3.C18
He3 — He3.C18
C1C9

Generators and relations for He3.C18
 G = < a,b,c,d | a3=b3=c3=1, d18=b, ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=a-1c-1 >

Subgroups: 132 in 34 conjugacy classes, 12 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C9, C18, C3xS3, S3xC9, C32:C6, C32:C18, He3.C18
9C2
3C3
9C3
3S3
9S3
9C6
2C9
3C32
6C9
3C3xS3
9C18
9C3xS3
23- 1+2
3C3xC9
3C27
6C27
63- 1+2
3S3xC9
9C54
9S3xC9
2C27:C3
3S3xC27

Smallest permutation representation of He3.C18
On 81 points
Generators in S81
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 46 64)(30 48 66)(32 50 68)(34 52 70)(36 54 72)(38 56 74)(40 58 76)(42 60 78)(44 62 80)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 64)(29 47 65)(30 48 66)(31 49 67)(32 50 68)(33 51 69)(34 52 70)(35 53 71)(36 54 72)(37 55 73)(38 56 74)(39 57 75)(40 58 76)(41 59 77)(42 60 78)(43 61 79)(44 62 80)(45 63 81)
(1 58 31)(2 50 77)(3 42 69)(4 34 61)(5 80 53)(6 72 45)(7 64 37)(8 56 29)(9 48 75)(10 40 67)(11 32 59)(12 78 51)(13 70 43)(14 62 35)(15 54 81)(16 46 73)(17 38 65)(18 30 57)(19 76 49)(20 68 41)(21 60 33)(22 52 79)(23 44 71)(24 36 63)(25 28 55)(26 74 47)(27 66 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,64)(30,48,66)(32,50,68)(34,52,70)(36,54,72)(38,56,74)(40,58,76)(42,60,78)(44,62,80), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,64)(29,47,65)(30,48,66)(31,49,67)(32,50,68)(33,51,69)(34,52,70)(35,53,71)(36,54,72)(37,55,73)(38,56,74)(39,57,75)(40,58,76)(41,59,77)(42,60,78)(43,61,79)(44,62,80)(45,63,81), (1,58,31)(2,50,77)(3,42,69)(4,34,61)(5,80,53)(6,72,45)(7,64,37)(8,56,29)(9,48,75)(10,40,67)(11,32,59)(12,78,51)(13,70,43)(14,62,35)(15,54,81)(16,46,73)(17,38,65)(18,30,57)(19,76,49)(20,68,41)(21,60,33)(22,52,79)(23,44,71)(24,36,63)(25,28,55)(26,74,47)(27,66,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,46,64)(30,48,66)(32,50,68)(34,52,70)(36,54,72)(38,56,74)(40,58,76)(42,60,78)(44,62,80), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,64)(29,47,65)(30,48,66)(31,49,67)(32,50,68)(33,51,69)(34,52,70)(35,53,71)(36,54,72)(37,55,73)(38,56,74)(39,57,75)(40,58,76)(41,59,77)(42,60,78)(43,61,79)(44,62,80)(45,63,81), (1,58,31)(2,50,77)(3,42,69)(4,34,61)(5,80,53)(6,72,45)(7,64,37)(8,56,29)(9,48,75)(10,40,67)(11,32,59)(12,78,51)(13,70,43)(14,62,35)(15,54,81)(16,46,73)(17,38,65)(18,30,57)(19,76,49)(20,68,41)(21,60,33)(22,52,79)(23,44,71)(24,36,63)(25,28,55)(26,74,47)(27,66,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,46,64),(30,48,66),(32,50,68),(34,52,70),(36,54,72),(38,56,74),(40,58,76),(42,60,78),(44,62,80)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,64),(29,47,65),(30,48,66),(31,49,67),(32,50,68),(33,51,69),(34,52,70),(35,53,71),(36,54,72),(37,55,73),(38,56,74),(39,57,75),(40,58,76),(41,59,77),(42,60,78),(43,61,79),(44,62,80),(45,63,81)], [(1,58,31),(2,50,77),(3,42,69),(4,34,61),(5,80,53),(6,72,45),(7,64,37),(8,56,29),(9,48,75),(10,40,67),(11,32,59),(12,78,51),(13,70,43),(14,62,35),(15,54,81),(16,46,73),(17,38,65),(18,30,57),(19,76,49),(20,68,41),(21,60,33),(22,52,79),(23,44,71),(24,36,63),(25,28,55),(26,74,47),(27,66,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)]])

66 conjugacy classes

class 1  2 3A3B3C3D6A6B9A···9F9G9H9I9J18A···18F27A···27R27S···27X54A···54R
order123333669···9999918···1827···2727···2754···54
size1911618991···16618189···93···318···189···9

66 irreducible representations

dim111111222366
type++++
imageC1C2C3C6C9C18S3C3xS3S3xC9He3.C18C32:C6C32:C18
kernelHe3.C18C9.5He3He3.4C6C9oHe3He3:C2He3C3xC27C3xC9C32C1C9C3
# reps1122661263612

Matrix representation of He3.C18 in GL3(F109) generated by

63046
0145
0045
,
4500
0450
0045
,
10810
10800
6201
,
2610683
01060
0773
G:=sub<GL(3,GF(109))| [63,0,0,0,1,0,46,45,45],[45,0,0,0,45,0,0,0,45],[108,108,62,1,0,0,0,0,1],[26,0,0,106,106,77,83,0,3] >;

He3.C18 in GAP, Magma, Sage, TeX

{\rm He}_3.C_{18}
% in TeX

G:=Group("He3.C18");
// GroupNames label

G:=SmallGroup(486,26);
// by ID

G=gap.SmallGroup(486,26);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,500,867,873,8104,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^18=b,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*c^-1>;
// generators/relations

Export

Subgroup lattice of He3.C18 in TeX

׿
x
:
Z
F
o
wr
Q
<