Copied to
clipboard

G = (C3×C9)⋊C18order 486 = 2·35

2nd semidirect product of C3×C9 and C18 acting via C18/C3=C6

metabelian, supersoluble, monomial

Aliases: C9⋊S32C9, (C3×C9)⋊2C18, C32⋊C9.5S3, (C32×C9).4C6, C32.7(S3×C9), C33.50(C3×S3), C3.3(C32⋊C18), C32.19He31C2, C32.36(C32⋊C6), C3.2(He3.S3), (C3×C9⋊S3).2C3, SmallGroup(486,20)

Series: Derived Chief Lower central Upper central

C1C3×C9 — (C3×C9)⋊C18
C1C3C32C3×C9C32×C9C32.19He3 — (C3×C9)⋊C18
C3×C9 — (C3×C9)⋊C18
C1C3

Generators and relations for (C3×C9)⋊C18
 G = < a,b,c | a3=b9=c18=1, ab=ba, cac-1=a-1b3, cbc-1=ab2 >

27C2
2C3
3C3
6C3
9S3
27S3
27C6
2C32
3C9
3C32
6C9
6C32
9C9
18C9
3C3⋊S3
9D9
9C3×S3
27C3×S3
27C18
2C3×C9
3C3×C9
3C3×C9
6C3×C9
6C3×C9
3C3×C3⋊S3
9S3×C9
9C3×D9
2C32⋊C9
3C32⋊C18

Smallest permutation representation of (C3×C9)⋊C18
On 54 points
Generators in S54
(2 14 8)(3 15 9)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(22 34 28)(23 35 29)(37 43 49)(39 51 45)(40 52 46)(42 48 54)
(1 27 44 13 21 38 7 33 50)(2 45 22 8 51 28 14 39 34)(3 35 40 15 29 52 9 23 46)(4 53 36 10 41 24 16 47 30)(5 19 42 17 31 54 11 25 48)(6 49 26 12 37 32 18 43 20)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (2,14,8)(3,15,9)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(22,34,28)(23,35,29)(37,43,49)(39,51,45)(40,52,46)(42,48,54), (1,27,44,13,21,38,7,33,50)(2,45,22,8,51,28,14,39,34)(3,35,40,15,29,52,9,23,46)(4,53,36,10,41,24,16,47,30)(5,19,42,17,31,54,11,25,48)(6,49,26,12,37,32,18,43,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (2,14,8)(3,15,9)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(22,34,28)(23,35,29)(37,43,49)(39,51,45)(40,52,46)(42,48,54), (1,27,44,13,21,38,7,33,50)(2,45,22,8,51,28,14,39,34)(3,35,40,15,29,52,9,23,46)(4,53,36,10,41,24,16,47,30)(5,19,42,17,31,54,11,25,48)(6,49,26,12,37,32,18,43,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(2,14,8),(3,15,9),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(22,34,28),(23,35,29),(37,43,49),(39,51,45),(40,52,46),(42,48,54)], [(1,27,44,13,21,38,7,33,50),(2,45,22,8,51,28,14,39,34),(3,35,40,15,29,52,9,23,46),(4,53,36,10,41,24,16,47,30),(5,19,42,17,31,54,11,25,48),(6,49,26,12,37,32,18,43,20)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9I9J···9O9P···9U18A···18F
order1233333333669···99···99···918···18
size1271122266627276···69···918···1827···27

39 irreducible representations

dim1111112226666
type+++++
imageC1C2C3C6C9C18S3C3×S3S3×C9C32⋊C6C32⋊C18He3.S3(C3×C9)⋊C18
kernel(C3×C9)⋊C18C32.19He3C3×C9⋊S3C32×C9C9⋊S3C3×C9C32⋊C9C33C32C32C3C3C1
# reps1122661261236

Matrix representation of (C3×C9)⋊C18 in GL6(𝔽19)

100000
070000
181111000
000100
12807110
8001807
,
1600000
0170000
17017000
000600
330490
16160909
,
111201013
0001100
1807117
121213000
80811011
0818808

G:=sub<GL(6,GF(19))| [1,0,18,0,12,8,0,7,11,0,8,0,0,0,11,0,0,0,0,0,0,1,7,18,0,0,0,0,11,0,0,0,0,0,0,7],[16,0,17,0,3,16,0,17,0,0,3,16,0,0,17,0,0,0,0,0,0,6,4,9,0,0,0,0,9,0,0,0,0,0,0,9],[11,0,1,12,8,0,12,0,8,12,0,8,0,0,0,13,8,18,1,11,7,0,11,8,0,0,11,0,0,0,13,0,7,0,11,8] >;

(C3×C9)⋊C18 in GAP, Magma, Sage, TeX

(C_3\times C_9)\rtimes C_{18}
% in TeX

G:=Group("(C3xC9):C18");
// GroupNames label

G:=SmallGroup(486,20);
// by ID

G=gap.SmallGroup(486,20);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,8643,873,237,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c|a^3=b^9=c^18=1,a*b=b*a,c*a*c^-1=a^-1*b^3,c*b*c^-1=a*b^2>;
// generators/relations

Export

Subgroup lattice of (C3×C9)⋊C18 in TeX

׿
×
𝔽