metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C41:Dic3, C123:1C4, D41.S3, C3:(C41:C4), (C3xD41).1C2, SmallGroup(492,6)
Series: Derived ►Chief ►Lower central ►Upper central
C123 — C41:Dic3 |
Generators and relations for C41:Dic3
G = < a,b,c | a41=b6=1, c2=b3, bab-1=a-1, cac-1=a32, cbc-1=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)(83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123)
(1 97 42)(2 96 43 41 98 82)(3 95 44 40 99 81)(4 94 45 39 100 80)(5 93 46 38 101 79)(6 92 47 37 102 78)(7 91 48 36 103 77)(8 90 49 35 104 76)(9 89 50 34 105 75)(10 88 51 33 106 74)(11 87 52 32 107 73)(12 86 53 31 108 72)(13 85 54 30 109 71)(14 84 55 29 110 70)(15 83 56 28 111 69)(16 123 57 27 112 68)(17 122 58 26 113 67)(18 121 59 25 114 66)(19 120 60 24 115 65)(20 119 61 23 116 64)(21 118 62 22 117 63)
(2 10 41 33)(3 19 40 24)(4 28 39 15)(5 37 38 6)(7 14 36 29)(8 23 35 20)(9 32 34 11)(12 18 31 25)(13 27 30 16)(17 22 26 21)(42 97)(43 106 82 88)(44 115 81 120)(45 83 80 111)(46 92 79 102)(47 101 78 93)(48 110 77 84)(49 119 76 116)(50 87 75 107)(51 96 74 98)(52 105 73 89)(53 114 72 121)(54 123 71 112)(55 91 70 103)(56 100 69 94)(57 109 68 85)(58 118 67 117)(59 86 66 108)(60 95 65 99)(61 104 64 90)(62 113 63 122)
G:=sub<Sym(123)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,97,42)(2,96,43,41,98,82)(3,95,44,40,99,81)(4,94,45,39,100,80)(5,93,46,38,101,79)(6,92,47,37,102,78)(7,91,48,36,103,77)(8,90,49,35,104,76)(9,89,50,34,105,75)(10,88,51,33,106,74)(11,87,52,32,107,73)(12,86,53,31,108,72)(13,85,54,30,109,71)(14,84,55,29,110,70)(15,83,56,28,111,69)(16,123,57,27,112,68)(17,122,58,26,113,67)(18,121,59,25,114,66)(19,120,60,24,115,65)(20,119,61,23,116,64)(21,118,62,22,117,63), (2,10,41,33)(3,19,40,24)(4,28,39,15)(5,37,38,6)(7,14,36,29)(8,23,35,20)(9,32,34,11)(12,18,31,25)(13,27,30,16)(17,22,26,21)(42,97)(43,106,82,88)(44,115,81,120)(45,83,80,111)(46,92,79,102)(47,101,78,93)(48,110,77,84)(49,119,76,116)(50,87,75,107)(51,96,74,98)(52,105,73,89)(53,114,72,121)(54,123,71,112)(55,91,70,103)(56,100,69,94)(57,109,68,85)(58,118,67,117)(59,86,66,108)(60,95,65,99)(61,104,64,90)(62,113,63,122)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,97,42)(2,96,43,41,98,82)(3,95,44,40,99,81)(4,94,45,39,100,80)(5,93,46,38,101,79)(6,92,47,37,102,78)(7,91,48,36,103,77)(8,90,49,35,104,76)(9,89,50,34,105,75)(10,88,51,33,106,74)(11,87,52,32,107,73)(12,86,53,31,108,72)(13,85,54,30,109,71)(14,84,55,29,110,70)(15,83,56,28,111,69)(16,123,57,27,112,68)(17,122,58,26,113,67)(18,121,59,25,114,66)(19,120,60,24,115,65)(20,119,61,23,116,64)(21,118,62,22,117,63), (2,10,41,33)(3,19,40,24)(4,28,39,15)(5,37,38,6)(7,14,36,29)(8,23,35,20)(9,32,34,11)(12,18,31,25)(13,27,30,16)(17,22,26,21)(42,97)(43,106,82,88)(44,115,81,120)(45,83,80,111)(46,92,79,102)(47,101,78,93)(48,110,77,84)(49,119,76,116)(50,87,75,107)(51,96,74,98)(52,105,73,89)(53,114,72,121)(54,123,71,112)(55,91,70,103)(56,100,69,94)(57,109,68,85)(58,118,67,117)(59,86,66,108)(60,95,65,99)(61,104,64,90)(62,113,63,122) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82),(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123)], [(1,97,42),(2,96,43,41,98,82),(3,95,44,40,99,81),(4,94,45,39,100,80),(5,93,46,38,101,79),(6,92,47,37,102,78),(7,91,48,36,103,77),(8,90,49,35,104,76),(9,89,50,34,105,75),(10,88,51,33,106,74),(11,87,52,32,107,73),(12,86,53,31,108,72),(13,85,54,30,109,71),(14,84,55,29,110,70),(15,83,56,28,111,69),(16,123,57,27,112,68),(17,122,58,26,113,67),(18,121,59,25,114,66),(19,120,60,24,115,65),(20,119,61,23,116,64),(21,118,62,22,117,63)], [(2,10,41,33),(3,19,40,24),(4,28,39,15),(5,37,38,6),(7,14,36,29),(8,23,35,20),(9,32,34,11),(12,18,31,25),(13,27,30,16),(17,22,26,21),(42,97),(43,106,82,88),(44,115,81,120),(45,83,80,111),(46,92,79,102),(47,101,78,93),(48,110,77,84),(49,119,76,116),(50,87,75,107),(51,96,74,98),(52,105,73,89),(53,114,72,121),(54,123,71,112),(55,91,70,103),(56,100,69,94),(57,109,68,85),(58,118,67,117),(59,86,66,108),(60,95,65,99),(61,104,64,90),(62,113,63,122)]])
36 conjugacy classes
class | 1 | 2 | 3 | 4A | 4B | 6 | 41A | ··· | 41J | 123A | ··· | 123T |
order | 1 | 2 | 3 | 4 | 4 | 6 | 41 | ··· | 41 | 123 | ··· | 123 |
size | 1 | 41 | 2 | 123 | 123 | 82 | 4 | ··· | 4 | 4 | ··· | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | - | + | ||
image | C1 | C2 | C4 | S3 | Dic3 | C41:C4 | C41:Dic3 |
kernel | C41:Dic3 | C3xD41 | C123 | D41 | C41 | C3 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 10 | 20 |
Matrix representation of C41:Dic3 ►in GL4(F2953) generated by
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
2952 | 2644 | 554 | 2644 |
971 | 1126 | 1943 | 1392 |
2293 | 2431 | 2559 | 1982 |
2614 | 138 | 2165 | 660 |
1534 | 398 | 2056 | 339 |
1 | 0 | 0 | 0 |
848 | 229 | 234 | 1268 |
1038 | 780 | 2532 | 614 |
1939 | 1797 | 2739 | 191 |
G:=sub<GL(4,GF(2953))| [0,0,0,2952,1,0,0,2644,0,1,0,554,0,0,1,2644],[971,2293,2614,1534,1126,2431,138,398,1943,2559,2165,2056,1392,1982,660,339],[1,848,1038,1939,0,229,780,1797,0,234,2532,2739,0,1268,614,191] >;
C41:Dic3 in GAP, Magma, Sage, TeX
C_{41}\rtimes {\rm Dic}_3
% in TeX
G:=Group("C41:Dic3");
// GroupNames label
G:=SmallGroup(492,6);
// by ID
G=gap.SmallGroup(492,6);
# by ID
G:=PCGroup([4,-2,-2,-3,-41,8,98,1731,3847]);
// Polycyclic
G:=Group<a,b,c|a^41=b^6=1,c^2=b^3,b*a*b^-1=a^-1,c*a*c^-1=a^32,c*b*c^-1=b^-1>;
// generators/relations
Export