direct product, abelian, monomial, 3-elementary
Aliases: C3×C24, SmallGroup(72,14)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3×C24 |
C1 — C3×C24 |
C1 — C3×C24 |
Generators and relations for C3×C24
G = < a,b | a3=b24=1, ab=ba >
(1 37 64)(2 38 65)(3 39 66)(4 40 67)(5 41 68)(6 42 69)(7 43 70)(8 44 71)(9 45 72)(10 46 49)(11 47 50)(12 48 51)(13 25 52)(14 26 53)(15 27 54)(16 28 55)(17 29 56)(18 30 57)(19 31 58)(20 32 59)(21 33 60)(22 34 61)(23 35 62)(24 36 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,37,64)(2,38,65)(3,39,66)(4,40,67)(5,41,68)(6,42,69)(7,43,70)(8,44,71)(9,45,72)(10,46,49)(11,47,50)(12,48,51)(13,25,52)(14,26,53)(15,27,54)(16,28,55)(17,29,56)(18,30,57)(19,31,58)(20,32,59)(21,33,60)(22,34,61)(23,35,62)(24,36,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,37,64)(2,38,65)(3,39,66)(4,40,67)(5,41,68)(6,42,69)(7,43,70)(8,44,71)(9,45,72)(10,46,49)(11,47,50)(12,48,51)(13,25,52)(14,26,53)(15,27,54)(16,28,55)(17,29,56)(18,30,57)(19,31,58)(20,32,59)(21,33,60)(22,34,61)(23,35,62)(24,36,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,37,64),(2,38,65),(3,39,66),(4,40,67),(5,41,68),(6,42,69),(7,43,70),(8,44,71),(9,45,72),(10,46,49),(11,47,50),(12,48,51),(13,25,52),(14,26,53),(15,27,54),(16,28,55),(17,29,56),(18,30,57),(19,31,58),(20,32,59),(21,33,60),(22,34,61),(23,35,62),(24,36,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)]])
C3×C24 is a maximal subgroup of
C24.S3 C24⋊S3 C24⋊2S3 C32⋊5D8 C32⋊5Q16
72 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 4A | 4B | 6A | ··· | 6H | 8A | 8B | 8C | 8D | 12A | ··· | 12P | 24A | ··· | 24AF |
order | 1 | 2 | 3 | ··· | 3 | 4 | 4 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C3 | C4 | C6 | C8 | C12 | C24 |
kernel | C3×C24 | C3×C12 | C24 | C3×C6 | C12 | C32 | C6 | C3 |
# reps | 1 | 1 | 8 | 2 | 8 | 4 | 16 | 32 |
Matrix representation of C3×C24 ►in GL3(𝔽73) generated by
64 | 0 | 0 |
0 | 8 | 0 |
0 | 0 | 1 |
9 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 63 |
G:=sub<GL(3,GF(73))| [64,0,0,0,8,0,0,0,1],[9,0,0,0,9,0,0,0,63] >;
C3×C24 in GAP, Magma, Sage, TeX
C_3\times C_{24}
% in TeX
G:=Group("C3xC24");
// GroupNames label
G:=SmallGroup(72,14);
// by ID
G=gap.SmallGroup(72,14);
# by ID
G:=PCGroup([5,-2,-3,-3,-2,-2,90,58]);
// Polycyclic
G:=Group<a,b|a^3=b^24=1,a*b=b*a>;
// generators/relations
Export