Copied to
clipboard

G = C7×D5order 70 = 2·5·7

Direct product of C7 and D5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C7×D5, C5⋊C14, C353C2, SmallGroup(70,1)

Series: Derived Chief Lower central Upper central

C1C5 — C7×D5
C1C5C35 — C7×D5
C5 — C7×D5
C1C7

Generators and relations for C7×D5
 G = < a,b,c | a7=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C14

Character table of C7×D5

 class 125A5B7A7B7C7D7E7F14A14B14C14D14E14F35A35B35C35D35E35F35G35H35I35J35K35L
 size 1522111111555555222222222222
ρ11111111111111111111111111111    trivial
ρ21-111111111-1-1-1-1-1-1111111111111    linear of order 2
ρ31111ζ72ζ73ζ74ζ75ζ76ζ7ζ76ζ72ζ73ζ74ζ75ζ7ζ75ζ75ζ72ζ76ζ76ζ7ζ73ζ73ζ7ζ74ζ74ζ72    linear of order 7
ρ41111ζ75ζ74ζ73ζ72ζ7ζ76ζ7ζ75ζ74ζ73ζ72ζ76ζ72ζ72ζ75ζ7ζ7ζ76ζ74ζ74ζ76ζ73ζ73ζ75    linear of order 7
ρ51-111ζ7ζ75ζ72ζ76ζ73ζ7473775727674ζ76ζ76ζ7ζ73ζ73ζ74ζ75ζ75ζ74ζ72ζ72ζ7    linear of order 14
ρ61-111ζ72ζ73ζ74ζ75ζ76ζ776727374757ζ75ζ75ζ72ζ76ζ76ζ7ζ73ζ73ζ7ζ74ζ74ζ72    linear of order 14
ρ71-111ζ73ζ7ζ76ζ74ζ72ζ7572737767475ζ74ζ74ζ73ζ72ζ72ζ75ζ7ζ7ζ75ζ76ζ76ζ73    linear of order 14
ρ81111ζ7ζ75ζ72ζ76ζ73ζ74ζ73ζ7ζ75ζ72ζ76ζ74ζ76ζ76ζ7ζ73ζ73ζ74ζ75ζ75ζ74ζ72ζ72ζ7    linear of order 7
ρ91-111ζ74ζ76ζ7ζ73ζ75ζ7275747677372ζ73ζ73ζ74ζ75ζ75ζ72ζ76ζ76ζ72ζ7ζ7ζ74    linear of order 14
ρ101111ζ76ζ72ζ75ζ7ζ74ζ73ζ74ζ76ζ72ζ75ζ7ζ73ζ7ζ7ζ76ζ74ζ74ζ73ζ72ζ72ζ73ζ75ζ75ζ76    linear of order 7
ρ111-111ζ76ζ72ζ75ζ7ζ74ζ7374767275773ζ7ζ7ζ76ζ74ζ74ζ73ζ72ζ72ζ73ζ75ζ75ζ76    linear of order 14
ρ121-111ζ75ζ74ζ73ζ72ζ7ζ7677574737276ζ72ζ72ζ75ζ7ζ7ζ76ζ74ζ74ζ76ζ73ζ73ζ75    linear of order 14
ρ131111ζ73ζ7ζ76ζ74ζ72ζ75ζ72ζ73ζ7ζ76ζ74ζ75ζ74ζ74ζ73ζ72ζ72ζ75ζ7ζ7ζ75ζ76ζ76ζ73    linear of order 7
ρ141111ζ74ζ76ζ7ζ73ζ75ζ72ζ75ζ74ζ76ζ7ζ73ζ72ζ73ζ73ζ74ζ75ζ75ζ72ζ76ζ76ζ72ζ7ζ7ζ74    linear of order 7
ρ1520-1-5/2-1+5/2222222000000-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ1620-1+5/2-1-5/2222222000000-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ1720-1+5/2-1-5/276727577473000000ζ53ζ752ζ7ζ54ζ75ζ7ζ54ζ765ζ76ζ53ζ7452ζ74ζ54ζ745ζ74ζ54ζ735ζ73ζ53ζ7252ζ72ζ54ζ725ζ72ζ53ζ7352ζ73ζ53ζ7552ζ75ζ54ζ755ζ75ζ53ζ7652ζ76    complex faithful
ρ1820-1-5/2-1+5/272737475767000000ζ54ζ755ζ75ζ53ζ7552ζ75ζ53ζ7252ζ72ζ54ζ765ζ76ζ53ζ7652ζ76ζ53ζ752ζ7ζ54ζ735ζ73ζ53ζ7352ζ73ζ54ζ75ζ7ζ54ζ745ζ74ζ53ζ7452ζ74ζ54ζ725ζ72    complex faithful
ρ1920-1-5/2-1+5/275747372776000000ζ54ζ725ζ72ζ53ζ7252ζ72ζ53ζ7552ζ75ζ54ζ75ζ7ζ53ζ752ζ7ζ53ζ7652ζ76ζ54ζ745ζ74ζ53ζ7452ζ74ζ54ζ765ζ76ζ54ζ735ζ73ζ53ζ7352ζ73ζ54ζ755ζ75    complex faithful
ρ2020-1+5/2-1-5/274767737572000000ζ53ζ7352ζ73ζ54ζ735ζ73ζ54ζ745ζ74ζ53ζ7552ζ75ζ54ζ755ζ75ζ54ζ725ζ72ζ53ζ7652ζ76ζ54ζ765ζ76ζ53ζ7252ζ72ζ53ζ752ζ7ζ54ζ75ζ7ζ53ζ7452ζ74    complex faithful
ρ2120-1+5/2-1-5/273776747275000000ζ53ζ7452ζ74ζ54ζ745ζ74ζ54ζ735ζ73ζ53ζ7252ζ72ζ54ζ725ζ72ζ54ζ755ζ75ζ53ζ752ζ7ζ54ζ75ζ7ζ53ζ7552ζ75ζ53ζ7652ζ76ζ54ζ765ζ76ζ53ζ7352ζ73    complex faithful
ρ2220-1-5/2-1+5/277572767374000000ζ54ζ765ζ76ζ53ζ7652ζ76ζ53ζ752ζ7ζ54ζ735ζ73ζ53ζ7352ζ73ζ53ζ7452ζ74ζ54ζ755ζ75ζ53ζ7552ζ75ζ54ζ745ζ74ζ54ζ725ζ72ζ53ζ7252ζ72ζ54ζ75ζ7    complex faithful
ρ2320-1-5/2-1+5/274767737572000000ζ54ζ735ζ73ζ53ζ7352ζ73ζ53ζ7452ζ74ζ54ζ755ζ75ζ53ζ7552ζ75ζ53ζ7252ζ72ζ54ζ765ζ76ζ53ζ7652ζ76ζ54ζ725ζ72ζ54ζ75ζ7ζ53ζ752ζ7ζ54ζ745ζ74    complex faithful
ρ2420-1+5/2-1-5/277572767374000000ζ53ζ7652ζ76ζ54ζ765ζ76ζ54ζ75ζ7ζ53ζ7352ζ73ζ54ζ735ζ73ζ54ζ745ζ74ζ53ζ7552ζ75ζ54ζ755ζ75ζ53ζ7452ζ74ζ53ζ7252ζ72ζ54ζ725ζ72ζ53ζ752ζ7    complex faithful
ρ2520-1-5/2-1+5/276727577473000000ζ54ζ75ζ7ζ53ζ752ζ7ζ53ζ7652ζ76ζ54ζ745ζ74ζ53ζ7452ζ74ζ53ζ7352ζ73ζ54ζ725ζ72ζ53ζ7252ζ72ζ54ζ735ζ73ζ54ζ755ζ75ζ53ζ7552ζ75ζ54ζ765ζ76    complex faithful
ρ2620-1+5/2-1-5/272737475767000000ζ53ζ7552ζ75ζ54ζ755ζ75ζ54ζ725ζ72ζ53ζ7652ζ76ζ54ζ765ζ76ζ54ζ75ζ7ζ53ζ7352ζ73ζ54ζ735ζ73ζ53ζ752ζ7ζ53ζ7452ζ74ζ54ζ745ζ74ζ53ζ7252ζ72    complex faithful
ρ2720-1-5/2-1+5/273776747275000000ζ54ζ745ζ74ζ53ζ7452ζ74ζ53ζ7352ζ73ζ54ζ725ζ72ζ53ζ7252ζ72ζ53ζ7552ζ75ζ54ζ75ζ7ζ53ζ752ζ7ζ54ζ755ζ75ζ54ζ765ζ76ζ53ζ7652ζ76ζ54ζ735ζ73    complex faithful
ρ2820-1+5/2-1-5/275747372776000000ζ53ζ7252ζ72ζ54ζ725ζ72ζ54ζ755ζ75ζ53ζ752ζ7ζ54ζ75ζ7ζ54ζ765ζ76ζ53ζ7452ζ74ζ54ζ745ζ74ζ53ζ7652ζ76ζ53ζ7352ζ73ζ54ζ735ζ73ζ53ζ7552ζ75    complex faithful

Smallest permutation representation of C7×D5
On 35 points
Generators in S35
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(1 30 13 24 20)(2 31 14 25 21)(3 32 8 26 15)(4 33 9 27 16)(5 34 10 28 17)(6 35 11 22 18)(7 29 12 23 19)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(22 35)(23 29)(24 30)(25 31)(26 32)(27 33)(28 34)

G:=sub<Sym(35)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,30,13,24,20)(2,31,14,25,21)(3,32,8,26,15)(4,33,9,27,16)(5,34,10,28,17)(6,35,11,22,18)(7,29,12,23,19), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,30,13,24,20)(2,31,14,25,21)(3,32,8,26,15)(4,33,9,27,16)(5,34,10,28,17)(6,35,11,22,18)(7,29,12,23,19), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(1,30,13,24,20),(2,31,14,25,21),(3,32,8,26,15),(4,33,9,27,16),(5,34,10,28,17),(6,35,11,22,18),(7,29,12,23,19)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(22,35),(23,29),(24,30),(25,31),(26,32),(27,33),(28,34)]])

C7×D5 is a maximal subgroup of   C7⋊F5

Matrix representation of C7×D5 in GL2(𝔽29) generated by

250
025
,
2323
50
,
023
240
G:=sub<GL(2,GF(29))| [25,0,0,25],[23,5,23,0],[0,24,23,0] >;

C7×D5 in GAP, Magma, Sage, TeX

C_7\times D_5
% in TeX

G:=Group("C7xD5");
// GroupNames label

G:=SmallGroup(70,1);
// by ID

G=gap.SmallGroup(70,1);
# by ID

G:=PCGroup([3,-2,-7,-5,506]);
// Polycyclic

G:=Group<a,b,c|a^7=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7×D5 in TeX
Character table of C7×D5 in TeX

׿
×
𝔽