direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C7×D5, C5⋊C14, C35⋊3C2, SmallGroup(70,1)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C7×D5 |
Generators and relations for C7×D5
G = < a,b,c | a7=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C7×D5
class | 1 | 2 | 5A | 5B | 7A | 7B | 7C | 7D | 7E | 7F | 14A | 14B | 14C | 14D | 14E | 14F | 35A | 35B | 35C | 35D | 35E | 35F | 35G | 35H | 35I | 35J | 35K | 35L | |
size | 1 | 5 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ76 | ζ72 | ζ73 | ζ74 | ζ75 | ζ7 | ζ75 | ζ75 | ζ72 | ζ76 | ζ76 | ζ7 | ζ73 | ζ73 | ζ7 | ζ74 | ζ74 | ζ72 | linear of order 7 |
ρ4 | 1 | 1 | 1 | 1 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ7 | ζ75 | ζ74 | ζ73 | ζ72 | ζ76 | ζ72 | ζ72 | ζ75 | ζ7 | ζ7 | ζ76 | ζ74 | ζ74 | ζ76 | ζ73 | ζ73 | ζ75 | linear of order 7 |
ρ5 | 1 | -1 | 1 | 1 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | -ζ73 | -ζ7 | -ζ75 | -ζ72 | -ζ76 | -ζ74 | ζ76 | ζ76 | ζ7 | ζ73 | ζ73 | ζ74 | ζ75 | ζ75 | ζ74 | ζ72 | ζ72 | ζ7 | linear of order 14 |
ρ6 | 1 | -1 | 1 | 1 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | -ζ76 | -ζ72 | -ζ73 | -ζ74 | -ζ75 | -ζ7 | ζ75 | ζ75 | ζ72 | ζ76 | ζ76 | ζ7 | ζ73 | ζ73 | ζ7 | ζ74 | ζ74 | ζ72 | linear of order 14 |
ρ7 | 1 | -1 | 1 | 1 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | -ζ72 | -ζ73 | -ζ7 | -ζ76 | -ζ74 | -ζ75 | ζ74 | ζ74 | ζ73 | ζ72 | ζ72 | ζ75 | ζ7 | ζ7 | ζ75 | ζ76 | ζ76 | ζ73 | linear of order 14 |
ρ8 | 1 | 1 | 1 | 1 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ73 | ζ7 | ζ75 | ζ72 | ζ76 | ζ74 | ζ76 | ζ76 | ζ7 | ζ73 | ζ73 | ζ74 | ζ75 | ζ75 | ζ74 | ζ72 | ζ72 | ζ7 | linear of order 7 |
ρ9 | 1 | -1 | 1 | 1 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | -ζ75 | -ζ74 | -ζ76 | -ζ7 | -ζ73 | -ζ72 | ζ73 | ζ73 | ζ74 | ζ75 | ζ75 | ζ72 | ζ76 | ζ76 | ζ72 | ζ7 | ζ7 | ζ74 | linear of order 14 |
ρ10 | 1 | 1 | 1 | 1 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ74 | ζ76 | ζ72 | ζ75 | ζ7 | ζ73 | ζ7 | ζ7 | ζ76 | ζ74 | ζ74 | ζ73 | ζ72 | ζ72 | ζ73 | ζ75 | ζ75 | ζ76 | linear of order 7 |
ρ11 | 1 | -1 | 1 | 1 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | -ζ74 | -ζ76 | -ζ72 | -ζ75 | -ζ7 | -ζ73 | ζ7 | ζ7 | ζ76 | ζ74 | ζ74 | ζ73 | ζ72 | ζ72 | ζ73 | ζ75 | ζ75 | ζ76 | linear of order 14 |
ρ12 | 1 | -1 | 1 | 1 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | -ζ7 | -ζ75 | -ζ74 | -ζ73 | -ζ72 | -ζ76 | ζ72 | ζ72 | ζ75 | ζ7 | ζ7 | ζ76 | ζ74 | ζ74 | ζ76 | ζ73 | ζ73 | ζ75 | linear of order 14 |
ρ13 | 1 | 1 | 1 | 1 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ72 | ζ73 | ζ7 | ζ76 | ζ74 | ζ75 | ζ74 | ζ74 | ζ73 | ζ72 | ζ72 | ζ75 | ζ7 | ζ7 | ζ75 | ζ76 | ζ76 | ζ73 | linear of order 7 |
ρ14 | 1 | 1 | 1 | 1 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ75 | ζ74 | ζ76 | ζ7 | ζ73 | ζ72 | ζ73 | ζ73 | ζ74 | ζ75 | ζ75 | ζ72 | ζ76 | ζ76 | ζ72 | ζ7 | ζ7 | ζ74 | linear of order 7 |
ρ15 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2ζ76 | 2ζ72 | 2ζ75 | 2ζ7 | 2ζ74 | 2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ7+ζ52ζ7 | ζ54ζ7+ζ5ζ7 | ζ54ζ76+ζ5ζ76 | ζ53ζ74+ζ52ζ74 | ζ54ζ74+ζ5ζ74 | ζ54ζ73+ζ5ζ73 | ζ53ζ72+ζ52ζ72 | ζ54ζ72+ζ5ζ72 | ζ53ζ73+ζ52ζ73 | ζ53ζ75+ζ52ζ75 | ζ54ζ75+ζ5ζ75 | ζ53ζ76+ζ52ζ76 | complex faithful |
ρ18 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2ζ72 | 2ζ73 | 2ζ74 | 2ζ75 | 2ζ76 | 2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ75+ζ5ζ75 | ζ53ζ75+ζ52ζ75 | ζ53ζ72+ζ52ζ72 | ζ54ζ76+ζ5ζ76 | ζ53ζ76+ζ52ζ76 | ζ53ζ7+ζ52ζ7 | ζ54ζ73+ζ5ζ73 | ζ53ζ73+ζ52ζ73 | ζ54ζ7+ζ5ζ7 | ζ54ζ74+ζ5ζ74 | ζ53ζ74+ζ52ζ74 | ζ54ζ72+ζ5ζ72 | complex faithful |
ρ19 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2ζ75 | 2ζ74 | 2ζ73 | 2ζ72 | 2ζ7 | 2ζ76 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ72+ζ5ζ72 | ζ53ζ72+ζ52ζ72 | ζ53ζ75+ζ52ζ75 | ζ54ζ7+ζ5ζ7 | ζ53ζ7+ζ52ζ7 | ζ53ζ76+ζ52ζ76 | ζ54ζ74+ζ5ζ74 | ζ53ζ74+ζ52ζ74 | ζ54ζ76+ζ5ζ76 | ζ54ζ73+ζ5ζ73 | ζ53ζ73+ζ52ζ73 | ζ54ζ75+ζ5ζ75 | complex faithful |
ρ20 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2ζ74 | 2ζ76 | 2ζ7 | 2ζ73 | 2ζ75 | 2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ73+ζ52ζ73 | ζ54ζ73+ζ5ζ73 | ζ54ζ74+ζ5ζ74 | ζ53ζ75+ζ52ζ75 | ζ54ζ75+ζ5ζ75 | ζ54ζ72+ζ5ζ72 | ζ53ζ76+ζ52ζ76 | ζ54ζ76+ζ5ζ76 | ζ53ζ72+ζ52ζ72 | ζ53ζ7+ζ52ζ7 | ζ54ζ7+ζ5ζ7 | ζ53ζ74+ζ52ζ74 | complex faithful |
ρ21 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2ζ73 | 2ζ7 | 2ζ76 | 2ζ74 | 2ζ72 | 2ζ75 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ74+ζ52ζ74 | ζ54ζ74+ζ5ζ74 | ζ54ζ73+ζ5ζ73 | ζ53ζ72+ζ52ζ72 | ζ54ζ72+ζ5ζ72 | ζ54ζ75+ζ5ζ75 | ζ53ζ7+ζ52ζ7 | ζ54ζ7+ζ5ζ7 | ζ53ζ75+ζ52ζ75 | ζ53ζ76+ζ52ζ76 | ζ54ζ76+ζ5ζ76 | ζ53ζ73+ζ52ζ73 | complex faithful |
ρ22 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2ζ7 | 2ζ75 | 2ζ72 | 2ζ76 | 2ζ73 | 2ζ74 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ76+ζ5ζ76 | ζ53ζ76+ζ52ζ76 | ζ53ζ7+ζ52ζ7 | ζ54ζ73+ζ5ζ73 | ζ53ζ73+ζ52ζ73 | ζ53ζ74+ζ52ζ74 | ζ54ζ75+ζ5ζ75 | ζ53ζ75+ζ52ζ75 | ζ54ζ74+ζ5ζ74 | ζ54ζ72+ζ5ζ72 | ζ53ζ72+ζ52ζ72 | ζ54ζ7+ζ5ζ7 | complex faithful |
ρ23 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2ζ74 | 2ζ76 | 2ζ7 | 2ζ73 | 2ζ75 | 2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ73+ζ5ζ73 | ζ53ζ73+ζ52ζ73 | ζ53ζ74+ζ52ζ74 | ζ54ζ75+ζ5ζ75 | ζ53ζ75+ζ52ζ75 | ζ53ζ72+ζ52ζ72 | ζ54ζ76+ζ5ζ76 | ζ53ζ76+ζ52ζ76 | ζ54ζ72+ζ5ζ72 | ζ54ζ7+ζ5ζ7 | ζ53ζ7+ζ52ζ7 | ζ54ζ74+ζ5ζ74 | complex faithful |
ρ24 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2ζ7 | 2ζ75 | 2ζ72 | 2ζ76 | 2ζ73 | 2ζ74 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ76+ζ52ζ76 | ζ54ζ76+ζ5ζ76 | ζ54ζ7+ζ5ζ7 | ζ53ζ73+ζ52ζ73 | ζ54ζ73+ζ5ζ73 | ζ54ζ74+ζ5ζ74 | ζ53ζ75+ζ52ζ75 | ζ54ζ75+ζ5ζ75 | ζ53ζ74+ζ52ζ74 | ζ53ζ72+ζ52ζ72 | ζ54ζ72+ζ5ζ72 | ζ53ζ7+ζ52ζ7 | complex faithful |
ρ25 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2ζ76 | 2ζ72 | 2ζ75 | 2ζ7 | 2ζ74 | 2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ7+ζ5ζ7 | ζ53ζ7+ζ52ζ7 | ζ53ζ76+ζ52ζ76 | ζ54ζ74+ζ5ζ74 | ζ53ζ74+ζ52ζ74 | ζ53ζ73+ζ52ζ73 | ζ54ζ72+ζ5ζ72 | ζ53ζ72+ζ52ζ72 | ζ54ζ73+ζ5ζ73 | ζ54ζ75+ζ5ζ75 | ζ53ζ75+ζ52ζ75 | ζ54ζ76+ζ5ζ76 | complex faithful |
ρ26 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2ζ72 | 2ζ73 | 2ζ74 | 2ζ75 | 2ζ76 | 2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ75+ζ52ζ75 | ζ54ζ75+ζ5ζ75 | ζ54ζ72+ζ5ζ72 | ζ53ζ76+ζ52ζ76 | ζ54ζ76+ζ5ζ76 | ζ54ζ7+ζ5ζ7 | ζ53ζ73+ζ52ζ73 | ζ54ζ73+ζ5ζ73 | ζ53ζ7+ζ52ζ7 | ζ53ζ74+ζ52ζ74 | ζ54ζ74+ζ5ζ74 | ζ53ζ72+ζ52ζ72 | complex faithful |
ρ27 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2ζ73 | 2ζ7 | 2ζ76 | 2ζ74 | 2ζ72 | 2ζ75 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ74+ζ5ζ74 | ζ53ζ74+ζ52ζ74 | ζ53ζ73+ζ52ζ73 | ζ54ζ72+ζ5ζ72 | ζ53ζ72+ζ52ζ72 | ζ53ζ75+ζ52ζ75 | ζ54ζ7+ζ5ζ7 | ζ53ζ7+ζ52ζ7 | ζ54ζ75+ζ5ζ75 | ζ54ζ76+ζ5ζ76 | ζ53ζ76+ζ52ζ76 | ζ54ζ73+ζ5ζ73 | complex faithful |
ρ28 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2ζ75 | 2ζ74 | 2ζ73 | 2ζ72 | 2ζ7 | 2ζ76 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ72+ζ52ζ72 | ζ54ζ72+ζ5ζ72 | ζ54ζ75+ζ5ζ75 | ζ53ζ7+ζ52ζ7 | ζ54ζ7+ζ5ζ7 | ζ54ζ76+ζ5ζ76 | ζ53ζ74+ζ52ζ74 | ζ54ζ74+ζ5ζ74 | ζ53ζ76+ζ52ζ76 | ζ53ζ73+ζ52ζ73 | ζ54ζ73+ζ5ζ73 | ζ53ζ75+ζ52ζ75 | complex faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(1 30 13 24 20)(2 31 14 25 21)(3 32 8 26 15)(4 33 9 27 16)(5 34 10 28 17)(6 35 11 22 18)(7 29 12 23 19)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(22 35)(23 29)(24 30)(25 31)(26 32)(27 33)(28 34)
G:=sub<Sym(35)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,30,13,24,20)(2,31,14,25,21)(3,32,8,26,15)(4,33,9,27,16)(5,34,10,28,17)(6,35,11,22,18)(7,29,12,23,19), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,30,13,24,20)(2,31,14,25,21)(3,32,8,26,15)(4,33,9,27,16)(5,34,10,28,17)(6,35,11,22,18)(7,29,12,23,19), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(22,35)(23,29)(24,30)(25,31)(26,32)(27,33)(28,34) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(1,30,13,24,20),(2,31,14,25,21),(3,32,8,26,15),(4,33,9,27,16),(5,34,10,28,17),(6,35,11,22,18),(7,29,12,23,19)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(22,35),(23,29),(24,30),(25,31),(26,32),(27,33),(28,34)]])
C7×D5 is a maximal subgroup of
C7⋊F5
Matrix representation of C7×D5 ►in GL2(𝔽29) generated by
25 | 0 |
0 | 25 |
23 | 23 |
5 | 0 |
0 | 23 |
24 | 0 |
G:=sub<GL(2,GF(29))| [25,0,0,25],[23,5,23,0],[0,24,23,0] >;
C7×D5 in GAP, Magma, Sage, TeX
C_7\times D_5
% in TeX
G:=Group("C7xD5");
// GroupNames label
G:=SmallGroup(70,1);
// by ID
G=gap.SmallGroup(70,1);
# by ID
G:=PCGroup([3,-2,-7,-5,506]);
// Polycyclic
G:=Group<a,b,c|a^7=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C7×D5 in TeX
Character table of C7×D5 in TeX