metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D35, C7⋊D5, C5⋊D7, C35⋊1C2, sometimes denoted D70 or Dih35 or Dih70, SmallGroup(70,3)
Series: Derived ►Chief ►Lower central ►Upper central
C35 — D35 |
Generators and relations for D35
G = < a,b | a35=b2=1, bab=a-1 >
Character table of D35
class | 1 | 2 | 5A | 5B | 7A | 7B | 7C | 35A | 35B | 35C | 35D | 35E | 35F | 35G | 35H | 35I | 35J | 35K | 35L | |
size | 1 | 35 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ4 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 0 | 2 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ6 | 2 | 0 | 2 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ7 | 2 | 0 | 2 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ8 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ54ζ7+ζ5ζ76 | ζ54ζ76+ζ5ζ7 | ζ54ζ74+ζ5ζ73 | ζ54ζ72+ζ5ζ75 | ζ54ζ75+ζ5ζ72 | ζ53ζ75+ζ52ζ72 | ζ53ζ73+ζ52ζ74 | ζ53ζ7+ζ52ζ76 | ζ53ζ76+ζ52ζ7 | ζ53ζ74+ζ52ζ73 | ζ53ζ72+ζ52ζ75 | ζ54ζ73+ζ5ζ74 | orthogonal faithful |
ρ9 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ53ζ76+ζ52ζ7 | ζ53ζ7+ζ52ζ76 | ζ53ζ73+ζ52ζ74 | ζ53ζ75+ζ52ζ72 | ζ53ζ72+ζ52ζ75 | ζ54ζ75+ζ5ζ72 | ζ54ζ73+ζ5ζ74 | ζ54ζ7+ζ5ζ76 | ζ54ζ76+ζ5ζ7 | ζ54ζ74+ζ5ζ73 | ζ54ζ72+ζ5ζ75 | ζ53ζ74+ζ52ζ73 | orthogonal faithful |
ρ10 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ54ζ76+ζ5ζ7 | ζ54ζ7+ζ5ζ76 | ζ54ζ73+ζ5ζ74 | ζ54ζ75+ζ5ζ72 | ζ54ζ72+ζ5ζ75 | ζ53ζ72+ζ52ζ75 | ζ53ζ74+ζ52ζ73 | ζ53ζ76+ζ52ζ7 | ζ53ζ7+ζ52ζ76 | ζ53ζ73+ζ52ζ74 | ζ53ζ75+ζ52ζ72 | ζ54ζ74+ζ5ζ73 | orthogonal faithful |
ρ11 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ53ζ74+ζ52ζ73 | ζ53ζ73+ζ52ζ74 | ζ53ζ72+ζ52ζ75 | ζ53ζ7+ζ52ζ76 | ζ53ζ76+ζ52ζ7 | ζ54ζ7+ζ5ζ76 | ζ54ζ72+ζ5ζ75 | ζ54ζ73+ζ5ζ74 | ζ54ζ74+ζ5ζ73 | ζ54ζ75+ζ5ζ72 | ζ54ζ76+ζ5ζ7 | ζ53ζ75+ζ52ζ72 | orthogonal faithful |
ρ12 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ54ζ73+ζ5ζ74 | ζ54ζ74+ζ5ζ73 | ζ54ζ75+ζ5ζ72 | ζ54ζ76+ζ5ζ7 | ζ54ζ7+ζ5ζ76 | ζ53ζ7+ζ52ζ76 | ζ53ζ72+ζ52ζ75 | ζ53ζ73+ζ52ζ74 | ζ53ζ74+ζ52ζ73 | ζ53ζ75+ζ52ζ72 | ζ53ζ76+ζ52ζ7 | ζ54ζ72+ζ5ζ75 | orthogonal faithful |
ρ13 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ54ζ75+ζ5ζ72 | ζ54ζ72+ζ5ζ75 | ζ54ζ76+ζ5ζ7 | ζ54ζ73+ζ5ζ74 | ζ54ζ74+ζ5ζ73 | ζ53ζ74+ζ52ζ73 | ζ53ζ7+ζ52ζ76 | ζ53ζ75+ζ52ζ72 | ζ53ζ72+ζ52ζ75 | ζ53ζ76+ζ52ζ7 | ζ53ζ73+ζ52ζ74 | ζ54ζ7+ζ5ζ76 | orthogonal faithful |
ρ14 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ53ζ75+ζ52ζ72 | ζ53ζ72+ζ52ζ75 | ζ53ζ76+ζ52ζ7 | ζ53ζ73+ζ52ζ74 | ζ53ζ74+ζ52ζ73 | ζ54ζ73+ζ5ζ74 | ζ54ζ76+ζ5ζ7 | ζ54ζ72+ζ5ζ75 | ζ54ζ75+ζ5ζ72 | ζ54ζ7+ζ5ζ76 | ζ54ζ74+ζ5ζ73 | ζ53ζ7+ζ52ζ76 | orthogonal faithful |
ρ15 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ54ζ74+ζ5ζ73 | ζ54ζ73+ζ5ζ74 | ζ54ζ72+ζ5ζ75 | ζ54ζ7+ζ5ζ76 | ζ54ζ76+ζ5ζ7 | ζ53ζ76+ζ52ζ7 | ζ53ζ75+ζ52ζ72 | ζ53ζ74+ζ52ζ73 | ζ53ζ73+ζ52ζ74 | ζ53ζ72+ζ52ζ75 | ζ53ζ7+ζ52ζ76 | ζ54ζ75+ζ5ζ72 | orthogonal faithful |
ρ16 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ53ζ72+ζ52ζ75 | ζ53ζ75+ζ52ζ72 | ζ53ζ7+ζ52ζ76 | ζ53ζ74+ζ52ζ73 | ζ53ζ73+ζ52ζ74 | ζ54ζ74+ζ5ζ73 | ζ54ζ7+ζ5ζ76 | ζ54ζ75+ζ5ζ72 | ζ54ζ72+ζ5ζ75 | ζ54ζ76+ζ5ζ7 | ζ54ζ73+ζ5ζ74 | ζ53ζ76+ζ52ζ7 | orthogonal faithful |
ρ17 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ53ζ7+ζ52ζ76 | ζ53ζ76+ζ52ζ7 | ζ53ζ74+ζ52ζ73 | ζ53ζ72+ζ52ζ75 | ζ53ζ75+ζ52ζ72 | ζ54ζ72+ζ5ζ75 | ζ54ζ74+ζ5ζ73 | ζ54ζ76+ζ5ζ7 | ζ54ζ7+ζ5ζ76 | ζ54ζ73+ζ5ζ74 | ζ54ζ75+ζ5ζ72 | ζ53ζ73+ζ52ζ74 | orthogonal faithful |
ρ18 | 2 | 0 | -1-√5/2 | -1+√5/2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ54ζ72+ζ5ζ75 | ζ54ζ75+ζ5ζ72 | ζ54ζ7+ζ5ζ76 | ζ54ζ74+ζ5ζ73 | ζ54ζ73+ζ5ζ74 | ζ53ζ73+ζ52ζ74 | ζ53ζ76+ζ52ζ7 | ζ53ζ72+ζ52ζ75 | ζ53ζ75+ζ52ζ72 | ζ53ζ7+ζ52ζ76 | ζ53ζ74+ζ52ζ73 | ζ54ζ76+ζ5ζ7 | orthogonal faithful |
ρ19 | 2 | 0 | -1+√5/2 | -1-√5/2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ53ζ73+ζ52ζ74 | ζ53ζ74+ζ52ζ73 | ζ53ζ75+ζ52ζ72 | ζ53ζ76+ζ52ζ7 | ζ53ζ7+ζ52ζ76 | ζ54ζ76+ζ5ζ7 | ζ54ζ75+ζ5ζ72 | ζ54ζ74+ζ5ζ73 | ζ54ζ73+ζ5ζ74 | ζ54ζ72+ζ5ζ75 | ζ54ζ7+ζ5ζ76 | ζ53ζ72+ζ52ζ75 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)
G:=sub<Sym(35)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19)]])
D35 is a maximal subgroup of
D5×D7 C5⋊F7 D105 D175 C5⋊D35 D245 C7⋊D35
D35 is a maximal quotient of Dic35 D105 D175 C5⋊D35 D245 C7⋊D35
Matrix representation of D35 ►in GL2(𝔽71) generated by
4 | 41 |
30 | 6 |
4 | 41 |
36 | 67 |
G:=sub<GL(2,GF(71))| [4,30,41,6],[4,36,41,67] >;
D35 in GAP, Magma, Sage, TeX
D_{35}
% in TeX
G:=Group("D35");
// GroupNames label
G:=SmallGroup(70,3);
// by ID
G=gap.SmallGroup(70,3);
# by ID
G:=PCGroup([3,-2,-5,-7,49,542]);
// Polycyclic
G:=Group<a,b|a^35=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D35 in TeX
Character table of D35 in TeX