Copied to
clipboard

G = D35order 70 = 2·5·7

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D35, C7⋊D5, C5⋊D7, C351C2, sometimes denoted D70 or Dih35 or Dih70, SmallGroup(70,3)

Series: Derived Chief Lower central Upper central

C1C35 — D35
C1C7C35 — D35
C35 — D35
C1

Generators and relations for D35
 G = < a,b | a35=b2=1, bab=a-1 >

35C2
7D5
5D7

Character table of D35

 class 125A5B7A7B7C35A35B35C35D35E35F35G35H35I35J35K35L
 size 13522222222222222222
ρ11111111111111111111    trivial
ρ21-111111111111111111    linear of order 2
ρ320-1-5/2-1+5/2222-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ420-1+5/2-1-5/2222-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ52022ζ7572ζ7473ζ767ζ7473ζ7473ζ7572ζ767ζ767ζ767ζ7572ζ7473ζ7473ζ7572ζ767ζ7572    orthogonal lifted from D7
ρ62022ζ7473ζ767ζ7572ζ767ζ767ζ7473ζ7572ζ7572ζ7572ζ7473ζ767ζ767ζ7473ζ7572ζ7473    orthogonal lifted from D7
ρ72022ζ767ζ7572ζ7473ζ7572ζ7572ζ767ζ7473ζ7473ζ7473ζ767ζ7572ζ7572ζ767ζ7473ζ767    orthogonal lifted from D7
ρ820-1-5/2-1+5/2ζ7473ζ767ζ7572ζ54ζ75ζ76ζ54ζ765ζ7ζ54ζ745ζ73ζ54ζ725ζ75ζ54ζ755ζ72ζ53ζ7552ζ72ζ53ζ7352ζ74ζ53ζ752ζ76ζ53ζ7652ζ7ζ53ζ7452ζ73ζ53ζ7252ζ75ζ54ζ735ζ74    orthogonal faithful
ρ920-1+5/2-1-5/2ζ7473ζ767ζ7572ζ53ζ7652ζ7ζ53ζ752ζ76ζ53ζ7352ζ74ζ53ζ7552ζ72ζ53ζ7252ζ75ζ54ζ755ζ72ζ54ζ735ζ74ζ54ζ75ζ76ζ54ζ765ζ7ζ54ζ745ζ73ζ54ζ725ζ75ζ53ζ7452ζ73    orthogonal faithful
ρ1020-1-5/2-1+5/2ζ7473ζ767ζ7572ζ54ζ765ζ7ζ54ζ75ζ76ζ54ζ735ζ74ζ54ζ755ζ72ζ54ζ725ζ75ζ53ζ7252ζ75ζ53ζ7452ζ73ζ53ζ7652ζ7ζ53ζ752ζ76ζ53ζ7352ζ74ζ53ζ7552ζ72ζ54ζ745ζ73    orthogonal faithful
ρ1120-1+5/2-1-5/2ζ7572ζ7473ζ767ζ53ζ7452ζ73ζ53ζ7352ζ74ζ53ζ7252ζ75ζ53ζ752ζ76ζ53ζ7652ζ7ζ54ζ75ζ76ζ54ζ725ζ75ζ54ζ735ζ74ζ54ζ745ζ73ζ54ζ755ζ72ζ54ζ765ζ7ζ53ζ7552ζ72    orthogonal faithful
ρ1220-1-5/2-1+5/2ζ7572ζ7473ζ767ζ54ζ735ζ74ζ54ζ745ζ73ζ54ζ755ζ72ζ54ζ765ζ7ζ54ζ75ζ76ζ53ζ752ζ76ζ53ζ7252ζ75ζ53ζ7352ζ74ζ53ζ7452ζ73ζ53ζ7552ζ72ζ53ζ7652ζ7ζ54ζ725ζ75    orthogonal faithful
ρ1320-1-5/2-1+5/2ζ767ζ7572ζ7473ζ54ζ755ζ72ζ54ζ725ζ75ζ54ζ765ζ7ζ54ζ735ζ74ζ54ζ745ζ73ζ53ζ7452ζ73ζ53ζ752ζ76ζ53ζ7552ζ72ζ53ζ7252ζ75ζ53ζ7652ζ7ζ53ζ7352ζ74ζ54ζ75ζ76    orthogonal faithful
ρ1420-1+5/2-1-5/2ζ767ζ7572ζ7473ζ53ζ7552ζ72ζ53ζ7252ζ75ζ53ζ7652ζ7ζ53ζ7352ζ74ζ53ζ7452ζ73ζ54ζ735ζ74ζ54ζ765ζ7ζ54ζ725ζ75ζ54ζ755ζ72ζ54ζ75ζ76ζ54ζ745ζ73ζ53ζ752ζ76    orthogonal faithful
ρ1520-1-5/2-1+5/2ζ7572ζ7473ζ767ζ54ζ745ζ73ζ54ζ735ζ74ζ54ζ725ζ75ζ54ζ75ζ76ζ54ζ765ζ7ζ53ζ7652ζ7ζ53ζ7552ζ72ζ53ζ7452ζ73ζ53ζ7352ζ74ζ53ζ7252ζ75ζ53ζ752ζ76ζ54ζ755ζ72    orthogonal faithful
ρ1620-1+5/2-1-5/2ζ767ζ7572ζ7473ζ53ζ7252ζ75ζ53ζ7552ζ72ζ53ζ752ζ76ζ53ζ7452ζ73ζ53ζ7352ζ74ζ54ζ745ζ73ζ54ζ75ζ76ζ54ζ755ζ72ζ54ζ725ζ75ζ54ζ765ζ7ζ54ζ735ζ74ζ53ζ7652ζ7    orthogonal faithful
ρ1720-1+5/2-1-5/2ζ7473ζ767ζ7572ζ53ζ752ζ76ζ53ζ7652ζ7ζ53ζ7452ζ73ζ53ζ7252ζ75ζ53ζ7552ζ72ζ54ζ725ζ75ζ54ζ745ζ73ζ54ζ765ζ7ζ54ζ75ζ76ζ54ζ735ζ74ζ54ζ755ζ72ζ53ζ7352ζ74    orthogonal faithful
ρ1820-1-5/2-1+5/2ζ767ζ7572ζ7473ζ54ζ725ζ75ζ54ζ755ζ72ζ54ζ75ζ76ζ54ζ745ζ73ζ54ζ735ζ74ζ53ζ7352ζ74ζ53ζ7652ζ7ζ53ζ7252ζ75ζ53ζ7552ζ72ζ53ζ752ζ76ζ53ζ7452ζ73ζ54ζ765ζ7    orthogonal faithful
ρ1920-1+5/2-1-5/2ζ7572ζ7473ζ767ζ53ζ7352ζ74ζ53ζ7452ζ73ζ53ζ7552ζ72ζ53ζ7652ζ7ζ53ζ752ζ76ζ54ζ765ζ7ζ54ζ755ζ72ζ54ζ745ζ73ζ54ζ735ζ74ζ54ζ725ζ75ζ54ζ75ζ76ζ53ζ7252ζ75    orthogonal faithful

Smallest permutation representation of D35
On 35 points
Generators in S35
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)

G:=sub<Sym(35)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19)]])

D35 is a maximal subgroup of   D5×D7  C5⋊F7  D105  D175  C5⋊D35  D245  C7⋊D35
D35 is a maximal quotient of   Dic35  D105  D175  C5⋊D35  D245  C7⋊D35

Matrix representation of D35 in GL2(𝔽71) generated by

441
306
,
441
3667
G:=sub<GL(2,GF(71))| [4,30,41,6],[4,36,41,67] >;

D35 in GAP, Magma, Sage, TeX

D_{35}
% in TeX

G:=Group("D35");
// GroupNames label

G:=SmallGroup(70,3);
// by ID

G=gap.SmallGroup(70,3);
# by ID

G:=PCGroup([3,-2,-5,-7,49,542]);
// Polycyclic

G:=Group<a,b|a^35=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D35 in TeX
Character table of D35 in TeX

׿
×
𝔽