Extensions 1→N→G→Q→1 with N=C4○D4 and Q=C4

Direct product G=N×Q with N=C4○D4 and Q=C4

Semidirect products G=N:Q with N=C4○D4 and Q=C4
extensionφ:Q→Out NdρLabelID
C4○D41C4 = C23.24D4φ: C4/C2C2 ⊆ Out C4○D432C4oD4:1C464,97
C4○D42C4 = C23.36D4φ: C4/C2C2 ⊆ Out C4○D432C4oD4:2C464,98
C4○D43C4 = C2×C4≀C2φ: C4/C2C2 ⊆ Out C4○D416C4oD4:3C464,101
C4○D44C4 = C42⋊C22φ: C4/C2C2 ⊆ Out C4○D4164C4oD4:4C464,102
C4○D45C4 = C23.33C23φ: C4/C2C2 ⊆ Out C4○D432C4oD4:5C464,201

Non-split extensions G=N.Q with N=C4○D4 and Q=C4
extensionφ:Q→Out NdρLabelID
C4○D4.1C4 = D4.C8φ: C4/C2C2 ⊆ Out C4○D4322C4oD4.1C464,31
C4○D4.2C4 = Q8○M4(2)φ: C4/C2C2 ⊆ Out C4○D4164C4oD4.2C464,249
C4○D4.3C4 = D4○C16φ: trivial image322C4oD4.3C464,185
C4○D4.4C4 = C2×C8○D4φ: trivial image32C4oD4.4C464,248