direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C4≀C2, C23.39D4, C42⋊15C22, M4(2)⋊9C22, C4○C4≀C2, C4○D4⋊3C4, (C2×D4)⋊9C4, D4⋊5(C2×C4), (C2×Q8)⋊7C4, Q8⋊5(C2×C4), (C2×C42)⋊6C2, C4.69(C2×D4), (C2×C4).126D4, C4.7(C22×C4), (C2×C4).65C23, C4○D4.5C22, C22.10(C2×D4), C4.16(C22⋊C4), (C2×M4(2))⋊12C2, C22.34(C22⋊C4), (C22×C4).110C22, (C2×C4).46(C2×C4), (C2×C4○D4).6C2, C2.23(C2×C22⋊C4), SmallGroup(64,101)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4≀C2
G = < a,b,c,d | a2=b4=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b-1c >
Subgroups: 137 in 85 conjugacy classes, 41 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4≀C2, C2×C42, C2×M4(2), C2×C4○D4, C2×C4≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4≀C2, C2×C22⋊C4, C2×C4≀C2
Character table of C2×C4≀C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | i | i | -i | i | i | -i | -1 | 1 | -i | -i | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | i | i | -i | -1 | 1 | -i | -i | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | -i | -i | i | -1 | 1 | i | i | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | -i | -i | i | -1 | 1 | i | i | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | -i | 1 | 1 | i | i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | -i | 1 | 1 | i | i | 1 | 1 | i | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | i | 1 | 1 | -i | -i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | i | 1 | 1 | -i | -i | 1 | 1 | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 1-i | -1+i | 1+i | 1+i | -1-i | -1-i | 0 | 0 | 1-i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 1+i | -1-i | 1-i | -1+i | 1-i | -1+i | 0 | 0 | -1-i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 1-i | -1+i | 1+i | -1-i | 1+i | -1-i | 0 | 0 | -1+i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | -1-i | 1+i | -1+i | -1+i | 1-i | 1-i | 0 | 0 | -1-i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | -1-i | 1+i | -1+i | 1-i | -1+i | 1-i | 0 | 0 | 1+i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | -1+i | 1-i | -1-i | -1-i | 1+i | 1+i | 0 | 0 | -1+i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | -1+i | 1-i | -1-i | 1+i | -1-i | 1+i | 0 | 0 | 1-i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 1+i | -1-i | 1-i | 1-i | -1+i | -1+i | 0 | 0 | 1+i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
(1 5)(2 6)(3 7)(4 8)(9 15)(10 16)(11 13)(12 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 10)(6 9)(7 12)(8 11)
(1 5)(2 6)(3 7)(4 8)(9 14 11 16)(10 15 12 13)
G:=sub<Sym(16)| (1,5)(2,6)(3,7)(4,8)(9,15)(10,16)(11,13)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,10)(6,9)(7,12)(8,11), (1,5)(2,6)(3,7)(4,8)(9,14,11,16)(10,15,12,13)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,15)(10,16)(11,13)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,10)(6,9)(7,12)(8,11), (1,5)(2,6)(3,7)(4,8)(9,14,11,16)(10,15,12,13) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,15),(10,16),(11,13),(12,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,10),(6,9),(7,12),(8,11)], [(1,5),(2,6),(3,7),(4,8),(9,14,11,16),(10,15,12,13)]])
G:=TransitiveGroup(16,111);
C2×C4≀C2 is a maximal subgroup of
D4.C42 Q8.C42 D4.3C42 C24.66D4 2+ 1+4⋊3C4 2- 1+4⋊2C4 C42.102D4 C4≀C2⋊C4 C42⋊9(C2×C4) M4(2).41D4 M4(2).42D4 C24.72D4 M4(2).43D4 C8.C22⋊C4 C8⋊C22⋊C4 (C2×C4)≀C2 C42⋊7D4 C42.426D4 M4(2).24D4 C42.427D4 C42.428D4 C42.107D4 C43⋊C2 C42⋊8D4 C42.326D4 C42.116D4 M4(2)⋊13D4 C42⋊9D4 C42.129D4 C42⋊10D4 C42.130D4 M4(2)⋊D4 M4(2)⋊4D4 C42.8D4 M4(2)⋊6D4 M4(2).7D4 C42⋊11D4 C42⋊12D4 C42.131D4 2- 1+4⋊5C4 M4(2).51D4 C42.313C23 D5⋊C4≀C2
C2×C4≀C2 is a maximal quotient of
C42.455D4 C42.47D4 C42.400D4 C42.401D4 D4⋊4M4(2) D4⋊5M4(2) Q8⋊5M4(2) C42.315D4 C42.316D4 C42.305D4 C42.375D4 C24.53D4 C42.403D4 C42.404D4 C24.150D4 C42.55D4 C42.56D4 C24.54D4 C24.55D4 C42.57D4 C42.66D4 C42.405D4 C42.406D4 C42.407D4 C42.408D4 C42.376D4 C42.67D4 C42.68D4 C42.69D4 C24.66D4 C42.102D4 C24.70D4 C24.72D4 (C2×C4)≀C2 C43⋊C2 M4(2)⋊13D4 M4(2)⋊7Q8 C42⋊16Q8 D5⋊C4≀C2
Matrix representation of C2×C4≀C2 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 13 |
16 | 0 | 0 |
0 | 0 | 13 |
0 | 4 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 4 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,4,0,0,0,13],[16,0,0,0,0,4,0,13,0],[1,0,0,0,1,0,0,0,4] >;
C2×C4≀C2 in GAP, Magma, Sage, TeX
C_2\times C_4\wr C_2
% in TeX
G:=Group("C2xC4wrC2");
// GroupNames label
G:=SmallGroup(64,101);
// by ID
G=gap.SmallGroup(64,101);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,963,489,117,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^-1*c>;
// generators/relations
Export