p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.C8, Q8.C8, C8.25D4, M5(2)⋊4C2, M4(2).3C4, C22.1M4(2), (C2×C16)⋊2C2, C4.3(C2×C8), C8○D4.2C2, C4○D4.1C4, C2.8(C22⋊C8), (C2×C8).95C22, C4.30(C22⋊C4), (C2×C4).40(C2×C4), SmallGroup(64,31)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.C8
G = < a,b,c | a4=b2=1, c8=a2, bab=a-1, ac=ca, cbc-1=ab >
Character table of D4.C8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 16I | 16J | 16K | 16L | |
size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | i | -i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | -i | i | i | -i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | -i | i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | ζ87 | ζ87 | ζ8 | ζ8 | ζ83 | ζ85 | ζ85 | ζ83 | ζ87 | ζ83 | ζ8 | ζ85 | linear of order 8 |
ρ10 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | i | -i | i | i | -i | -i | i | ζ85 | ζ85 | ζ83 | ζ83 | ζ8 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | linear of order 8 |
ρ11 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | i | -i | i | i | -i | -i | i | ζ8 | ζ8 | ζ87 | ζ87 | ζ85 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | linear of order 8 |
ρ12 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | ζ83 | ζ83 | ζ85 | ζ85 | ζ87 | ζ8 | ζ8 | ζ87 | ζ83 | ζ87 | ζ85 | ζ8 | linear of order 8 |
ρ13 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -i | i | -i | -i | i | i | -i | ζ83 | ζ83 | ζ85 | ζ85 | ζ87 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | linear of order 8 |
ρ14 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | ζ85 | ζ85 | ζ83 | ζ83 | ζ8 | ζ87 | ζ87 | ζ8 | ζ85 | ζ8 | ζ83 | ζ87 | linear of order 8 |
ρ15 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -i | i | -i | -i | i | i | -i | ζ87 | ζ87 | ζ8 | ζ8 | ζ83 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | linear of order 8 |
ρ16 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | ζ8 | ζ8 | ζ87 | ζ87 | ζ85 | ζ83 | ζ83 | ζ85 | ζ8 | ζ85 | ζ87 | ζ83 | linear of order 8 |
ρ17 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | -2i | 2i | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 2i | -2i | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 2ζ1614 | 2ζ162 | 2ζ166 | 2ζ1610 | 0 | 0 | 0 | 0 | ζ1615+ζ1611 | ζ167+ζ163 | ζ1613+ζ169 | ζ165+ζ16 | ζ1611+ζ167 | ζ169+ζ165 | ζ1613+ζ16 | ζ1615+ζ163 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 2ζ162 | 2ζ1614 | 2ζ1610 | 2ζ166 | 0 | 0 | 0 | 0 | ζ1613+ζ169 | ζ165+ζ16 | ζ1615+ζ1611 | ζ167+ζ163 | ζ1613+ζ16 | ζ1615+ζ163 | ζ1611+ζ167 | ζ169+ζ165 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 2ζ1614 | 2ζ162 | 2ζ166 | 2ζ1610 | 0 | 0 | 0 | 0 | ζ167+ζ163 | ζ1615+ζ1611 | ζ165+ζ16 | ζ1613+ζ169 | ζ1615+ζ163 | ζ1613+ζ16 | ζ169+ζ165 | ζ1611+ζ167 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 2ζ1610 | 2ζ166 | 2ζ162 | 2ζ1614 | 0 | 0 | 0 | 0 | ζ169+ζ165 | ζ1613+ζ16 | ζ1615+ζ163 | ζ1611+ζ167 | ζ1613+ζ169 | ζ167+ζ163 | ζ1615+ζ1611 | ζ165+ζ16 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 2ζ166 | 2ζ1610 | 2ζ1614 | 2ζ162 | 0 | 0 | 0 | 0 | ζ1611+ζ167 | ζ1615+ζ163 | ζ1613+ζ16 | ζ169+ζ165 | ζ167+ζ163 | ζ1613+ζ169 | ζ165+ζ16 | ζ1615+ζ1611 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 2ζ1610 | 2ζ166 | 2ζ162 | 2ζ1614 | 0 | 0 | 0 | 0 | ζ1613+ζ16 | ζ169+ζ165 | ζ1611+ζ167 | ζ1615+ζ163 | ζ165+ζ16 | ζ1615+ζ1611 | ζ167+ζ163 | ζ1613+ζ169 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 2ζ162 | 2ζ1614 | 2ζ1610 | 2ζ166 | 0 | 0 | 0 | 0 | ζ165+ζ16 | ζ1613+ζ169 | ζ167+ζ163 | ζ1615+ζ1611 | ζ169+ζ165 | ζ1611+ζ167 | ζ1615+ζ163 | ζ1613+ζ16 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 2ζ166 | 2ζ1610 | 2ζ1614 | 2ζ162 | 0 | 0 | 0 | 0 | ζ1615+ζ163 | ζ1611+ζ167 | ζ169+ζ165 | ζ1613+ζ16 | ζ1615+ζ1611 | ζ165+ζ16 | ζ1613+ζ169 | ζ167+ζ163 | 0 | 0 | 0 | 0 | complex faithful |
(1 31 9 23)(2 32 10 24)(3 17 11 25)(4 18 12 26)(5 19 13 27)(6 20 14 28)(7 21 15 29)(8 22 16 30)
(1 23)(2 10)(3 17)(5 27)(6 14)(7 21)(9 31)(11 25)(13 19)(15 29)(18 26)(22 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,31,9,23)(2,32,10,24)(3,17,11,25)(4,18,12,26)(5,19,13,27)(6,20,14,28)(7,21,15,29)(8,22,16,30), (1,23)(2,10)(3,17)(5,27)(6,14)(7,21)(9,31)(11,25)(13,19)(15,29)(18,26)(22,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;
G:=Group( (1,31,9,23)(2,32,10,24)(3,17,11,25)(4,18,12,26)(5,19,13,27)(6,20,14,28)(7,21,15,29)(8,22,16,30), (1,23)(2,10)(3,17)(5,27)(6,14)(7,21)(9,31)(11,25)(13,19)(15,29)(18,26)(22,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,31,9,23),(2,32,10,24),(3,17,11,25),(4,18,12,26),(5,19,13,27),(6,20,14,28),(7,21,15,29),(8,22,16,30)], [(1,23),(2,10),(3,17),(5,27),(6,14),(7,21),(9,31),(11,25),(13,19),(15,29),(18,26),(22,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])
D4.C8 is a maximal subgroup of
Q16.10D4 Q16.D4 D8.3D4 D8.12D4 C8.7S4
D4p.C8: C16○D8 D8.C8 D12.C8 Dic6.C8 D20.3C8 D20.4C8 D20.C8 D28.C8 ...
(Cp×D4).C8: M5(2)⋊12C22 C24.99D4 C40.92D4 D4.(C5⋊C8) C56.92D4 ...
D4.C8 is a maximal quotient of
C23.7M4(2) Q8⋊C16 C8.17Q16 M5(2)⋊7C4 D20.C8
C8.D4p: D4⋊C16 C8.31D8 D12.C8 Dic6.C8 D20.3C8 D20.4C8 D28.C8 Dic14.C8 ...
(Cp×D4).C8: C23.M4(2) C24.99D4 C40.92D4 D4.(C5⋊C8) C56.92D4 ...
Matrix representation of D4.C8 ►in GL2(𝔽17) generated by
0 | 9 |
15 | 0 |
0 | 9 |
2 | 0 |
16 | 8 |
2 | 16 |
G:=sub<GL(2,GF(17))| [0,15,9,0],[0,2,9,0],[16,2,8,16] >;
D4.C8 in GAP, Magma, Sage, TeX
D_4.C_8
% in TeX
G:=Group("D4.C8");
// GroupNames label
G:=SmallGroup(64,31);
// by ID
G=gap.SmallGroup(64,31);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,332,158,489,69,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^2=1,c^8=a^2,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a*b>;
// generators/relations
Export
Subgroup lattice of D4.C8 in TeX
Character table of D4.C8 in TeX