Extensions 1→N→G→Q→1 with N=C4 and Q=C42

Direct product G=N×Q with N=C4 and Q=C42

Semidirect products G=N:Q with N=C4 and Q=C42
extensionφ:Q→Aut NdρLabelID
C4⋊C42 = C4×C4⋊C4φ: C42/C2×C4C2 ⊆ Aut C464C4:C4^264,59

Non-split extensions G=N.Q with N=C4 and Q=C42
extensionφ:Q→Aut NdρLabelID
C4.1C42 = C426C4φ: C42/C2×C4C2 ⊆ Aut C416C4.1C4^264,20
C4.2C42 = C22.4Q16φ: C42/C2×C4C2 ⊆ Aut C464C4.2C4^264,21
C4.3C42 = C4.C42φ: C42/C2×C4C2 ⊆ Aut C432C4.3C4^264,22
C4.4C42 = C4×M4(2)φ: C42/C2×C4C2 ⊆ Aut C432C4.4C4^264,85
C4.5C42 = C82M4(2)φ: C42/C2×C4C2 ⊆ Aut C432C4.5C4^264,86
C4.6C42 = C165C4central extension (φ=1)64C4.6C4^264,27
C4.7C42 = C424C4central extension (φ=1)64C4.7C4^264,57
C4.8C42 = C2×C8⋊C4central extension (φ=1)64C4.8C4^264,84
C4.9C42 = C4.9C42central stem extension (φ=1)164C4.9C4^264,18
C4.10C42 = C4.10C42central stem extension (φ=1)164C4.10C4^264,19
C4.11C42 = C16⋊C4central stem extension (φ=1)164C4.11C4^264,28