p-group, metacyclic, nilpotent (class 2), monomial
Aliases: C16⋊2C4, C42.1C4, C4.11C42, C4.6M4(2), M5(2).2C2, C22.4M4(2), (C2×C8).2C4, C8.20(C2×C4), C8⋊C4.4C2, C2.3(C8⋊C4), (C2×C8).41C22, (C2×C4).66(C2×C4), SmallGroup(64,28)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16⋊C4
G = < a,b | a16=b4=1, bab-1=a13 >
Character table of C16⋊C4
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | -1 | 1 | 1 | i | -i | i | -1 | i | 1 | 1 | -i | -1 | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | -1 | 1 | 1 | -i | i | -i | -1 | -i | 1 | 1 | i | -1 | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | -1 | -1 | 1 | 1 | i | -i | -i | 1 | -i | -1 | -1 | i | 1 | i | linear of order 4 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | -1 | -1 | 1 | 1 | -i | i | i | 1 | i | -1 | -1 | -i | 1 | -i | linear of order 4 |
ρ11 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | 1 | 1 | -1 | -1 | i | -i | 1 | -i | -1 | -i | i | 1 | i | -1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | -i | i | i | -i | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | 1 | 1 | -1 | -1 | -i | i | -1 | -i | 1 | -i | i | -1 | i | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | 1 | -1 | i | -i | 1 | 1 | -1 | -1 | i | -i | -1 | i | 1 | i | -i | -1 | -i | 1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | 1 | 1 | -1 | -i | i | 1 | 1 | -1 | -1 | -i | i | 1 | i | -1 | i | -i | 1 | -i | -1 | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | i | -i | -i | i | linear of order 4 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ19 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | -4 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(2 6 10 14)(3 11)(4 16 12 8)(7 15)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,6,10,14)(3,11)(4,16,12,8)(7,15)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,6,10,14)(3,11)(4,16,12,8)(7,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(2,6,10,14),(3,11),(4,16,12,8),(7,15)]])
G:=TransitiveGroup(16,125);
C16⋊C4 is a maximal subgroup of
C4.C4≀C2 C42.(C2×C4) C8.5M4(2) C8.19M4(2) Q32⋊C4 D16⋊C4
C4p.C42: C8.23C42 C12.15C42 C48⋊C4 C20.45C42 C80⋊C4 C16⋊F5 C16⋊4F5 C42.3F5 ...
C16⋊C4 is a maximal quotient of
C42.2C8 C16⋊F5 C16⋊4F5
C4p.M4(2): C16⋊C8 C12.15C42 C48⋊C4 C20.45C42 C80⋊C4 C42.3F5 C20.23C42 C28.15C42 ...
Matrix representation of C16⋊C4 ►in GL4(𝔽5) generated by
0 | 0 | 0 | 3 |
0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(5))| [0,0,1,0,0,0,0,1,0,4,0,0,3,0,0,0],[2,0,0,0,0,3,0,0,0,0,4,0,0,0,0,1] >;
C16⋊C4 in GAP, Magma, Sage, TeX
C_{16}\rtimes C_4
% in TeX
G:=Group("C16:C4");
// GroupNames label
G:=SmallGroup(64,28);
// by ID
G=gap.SmallGroup(64,28);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,24,217,55,332,86,963,88]);
// Polycyclic
G:=Group<a,b|a^16=b^4=1,b*a*b^-1=a^13>;
// generators/relations
Export
Subgroup lattice of C16⋊C4 in TeX
Character table of C16⋊C4 in TeX