Extensions 1→N→G→Q→1 with N=C2 and Q=C2×M4(2)

Direct product G=N×Q with N=C2 and Q=C2×M4(2)
dρLabelID
C22×M4(2)32C2^2xM4(2)64,247


Non-split extensions G=N.Q with N=C2 and Q=C2×M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C2×M4(2)) = C2×C8⋊C4central extension (φ=1)64C2.1(C2xM4(2))64,84
C2.2(C2×M4(2)) = C4×M4(2)central extension (φ=1)32C2.2(C2xM4(2))64,85
C2.3(C2×M4(2)) = C2×C22⋊C8central extension (φ=1)32C2.3(C2xM4(2))64,87
C2.4(C2×M4(2)) = C2×C4⋊C8central extension (φ=1)64C2.4(C2xM4(2))64,103
C2.5(C2×M4(2)) = C42.12C4central extension (φ=1)32C2.5(C2xM4(2))64,112
C2.6(C2×M4(2)) = C24.4C4central stem extension (φ=1)16C2.6(C2xM4(2))64,88
C2.7(C2×M4(2)) = C4⋊M4(2)central stem extension (φ=1)32C2.7(C2xM4(2))64,104
C2.8(C2×M4(2)) = C42.6C4central stem extension (φ=1)32C2.8(C2xM4(2))64,113
C2.9(C2×M4(2)) = C89D4central stem extension (φ=1)32C2.9(C2xM4(2))64,116
C2.10(C2×M4(2)) = C86D4central stem extension (φ=1)32C2.10(C2xM4(2))64,117
C2.11(C2×M4(2)) = C84Q8central stem extension (φ=1)64C2.11(C2xM4(2))64,127

׿
×
𝔽