Extensions 1→N→G→Q→1 with N=C2 and Q=C2xM4(2)

Direct product G=NxQ with N=C2 and Q=C2xM4(2)
dρLabelID
C22xM4(2)32C2^2xM4(2)64,247


Non-split extensions G=N.Q with N=C2 and Q=C2xM4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C2xM4(2)) = C2xC8:C4central extension (φ=1)64C2.1(C2xM4(2))64,84
C2.2(C2xM4(2)) = C4xM4(2)central extension (φ=1)32C2.2(C2xM4(2))64,85
C2.3(C2xM4(2)) = C2xC22:C8central extension (φ=1)32C2.3(C2xM4(2))64,87
C2.4(C2xM4(2)) = C2xC4:C8central extension (φ=1)64C2.4(C2xM4(2))64,103
C2.5(C2xM4(2)) = C42.12C4central extension (φ=1)32C2.5(C2xM4(2))64,112
C2.6(C2xM4(2)) = C24.4C4central stem extension (φ=1)16C2.6(C2xM4(2))64,88
C2.7(C2xM4(2)) = C4:M4(2)central stem extension (φ=1)32C2.7(C2xM4(2))64,104
C2.8(C2xM4(2)) = C42.6C4central stem extension (φ=1)32C2.8(C2xM4(2))64,113
C2.9(C2xM4(2)) = C8:9D4central stem extension (φ=1)32C2.9(C2xM4(2))64,116
C2.10(C2xM4(2)) = C8:6D4central stem extension (φ=1)32C2.10(C2xM4(2))64,117
C2.11(C2xM4(2)) = C8:4Q8central stem extension (φ=1)64C2.11(C2xM4(2))64,127

׿
x
:
Z
F
o
wr
Q
<