p-group, metabelian, nilpotent (class 2), monomial
Aliases: C8⋊6D4, C4⋊1M4(2), C42.70C22, C4⋊C8⋊16C2, (C4×C8)⋊15C2, C4⋊C4.8C4, (C2×D4).9C4, (C4×D4).3C2, C2.11(C4×D4), C4.78(C2×D4), C22⋊C8⋊14C2, C2.8(C8○D4), C22⋊C4.5C4, C4.53(C4○D4), C23.12(C2×C4), (C2×M4(2))⋊15C2, (C2×C4).155C23, (C2×C8).101C22, C2.10(C2×M4(2)), C22.48(C22×C4), (C22×C4).41C22, (C2×C4).29(C2×C4), SmallGroup(64,117)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊6D4
G = < a,b,c | a8=b4=c2=1, ab=ba, cac=a5, cbc=b-1 >
Subgroups: 89 in 61 conjugacy classes, 37 normal (19 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C8⋊6D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C4×D4, C2×M4(2), C8○D4, C8⋊6D4
Character table of C8⋊6D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | i | -i | i | -i | -i | i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | i | -i | i | -i | -i | -i | i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | -i | i | -i | i | i | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | -i | i | -i | i | i | i | -i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -i | -i | i | -i | -i | i | i | i | i | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | -i | i | -i | -i | i | i | i | -i | -i | i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | i | i | -i | i | i | -i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | i | i | -i | i | i | -i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | -2i | 2 | -2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 2i | 2 | -2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | -2i | -2 | 2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 2i | -2 | 2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 2i | 0 | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | -2i | 0 | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 0 | 2ζ8 | 0 | 0 | 2ζ87 | 2ζ83 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 0 | 2ζ87 | 0 | 0 | 2ζ8 | 2ζ85 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ27 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 0 | 2ζ85 | 0 | 0 | 2ζ83 | 2ζ87 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 0 | 2ζ83 | 0 | 0 | 2ζ85 | 2ζ8 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 18 25)(2 15 19 26)(3 16 20 27)(4 9 21 28)(5 10 22 29)(6 11 23 30)(7 12 24 31)(8 13 17 32)
(1 25)(2 30)(3 27)(4 32)(5 29)(6 26)(7 31)(8 28)(9 17)(10 22)(11 19)(12 24)(13 21)(14 18)(15 23)(16 20)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,18,25)(2,15,19,26)(3,16,20,27)(4,9,21,28)(5,10,22,29)(6,11,23,30)(7,12,24,31)(8,13,17,32), (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,18,25)(2,15,19,26)(3,16,20,27)(4,9,21,28)(5,10,22,29)(6,11,23,30)(7,12,24,31)(8,13,17,32), (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,18,25),(2,15,19,26),(3,16,20,27),(4,9,21,28),(5,10,22,29),(6,11,23,30),(7,12,24,31),(8,13,17,32)], [(1,25),(2,30),(3,27),(4,32),(5,29),(6,26),(7,31),(8,28),(9,17),(10,22),(11,19),(12,24),(13,21),(14,18),(15,23),(16,20)]])
C8⋊6D4 is a maximal subgroup of
C8.31D8 C8⋊15SD16 Q8⋊2M4(2) C8.D8 C8⋊3SD16 C8⋊4SD16 C8.8SD16 C42.248C23 C42.250C23 C42.252C23 C42.254C23 C42.265C23 C42.681C23 M4(2)⋊22D4 D4×M4(2) M4(2)⋊23D4 C42.290C23 C42.291C23 C42.292C23 C42.294C23 Q8⋊6M4(2) D4⋊7M4(2) C42.693C23 C42.297C23 C42.299C23 C42.694C23 C42.301C23 C42.698C23 Q8⋊7M4(2) C42.308C23 C42.309C23 C42.310C23 D8⋊4D4 D8⋊5D4 SD16⋊1D4 SD16⋊2D4 SD16⋊3D4 Q16⋊4D4 Q16⋊5D4 C42.471C23 C42.472C23 C42.473C23 C42.474C23 C42.475C23 C42.476C23 C42.477C23 C42.478C23 C42.479C23 C42.480C23 C42.481C23 C42.482C23 C42.492C23 C42.493C23 C42.494C23 C42.495C23 C42.496C23 C42.497C23 C42.498C23 Dic5⋊2M4(2) C40⋊18D4
C8⋊D4p: C8⋊9D8 C8⋊6D8 C8⋊D8 C8⋊2D8 C8⋊6D12 C8⋊6D20 C8⋊6D28 ...
C4p⋊M4(2): C8⋊9SD16 C8⋊M4(2) C8⋊3M4(2) C12⋊2M4(2) C12⋊3M4(2) C20⋊6M4(2) C20⋊7M4(2) C20⋊M4(2) ...
D2p⋊C8⋊C2: D4⋊2M4(2) Dic3⋊M4(2) C24⋊21D4 Dic5⋊M4(2) Dic7⋊M4(2) C56⋊18D4 ...
C8⋊6D4 is a maximal quotient of
C8⋊6Q16 C8.M4(2) (C2×C8).195D4 C23⋊2M4(2) (C2×C8).Q8 C22⋊C4⋊4C8 C23.9M4(2) C42.61Q8 C42.325D4
C8⋊D4p: C8⋊6D8 C8⋊6D12 C8⋊6D20 C8⋊6D28 ...
C4p⋊M4(2): C8⋊9SD16 C8⋊M4(2) C8⋊3M4(2) C12⋊2M4(2) C12⋊3M4(2) C20⋊6M4(2) C20⋊7M4(2) C20⋊M4(2) ...
C2p.(C4×D4): C23.17C42 C4⋊C8⋊13C4 Dic3⋊M4(2) C24⋊21D4 Dic5⋊2M4(2) C40⋊18D4 Dic5⋊M4(2) Dic7⋊M4(2) ...
Matrix representation of C8⋊6D4 ►in GL4(𝔽17) generated by
5 | 15 | 0 | 0 |
2 | 12 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
10 | 13 | 0 | 0 |
4 | 7 | 0 | 0 |
0 | 0 | 1 | 8 |
0 | 0 | 4 | 16 |
10 | 13 | 0 | 0 |
12 | 7 | 0 | 0 |
0 | 0 | 1 | 8 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [5,2,0,0,15,12,0,0,0,0,13,0,0,0,0,13],[10,4,0,0,13,7,0,0,0,0,1,4,0,0,8,16],[10,12,0,0,13,7,0,0,0,0,1,0,0,0,8,16] >;
C8⋊6D4 in GAP, Magma, Sage, TeX
C_8\rtimes_6D_4
% in TeX
G:=Group("C8:6D4");
// GroupNames label
G:=SmallGroup(64,117);
// by ID
G=gap.SmallGroup(64,117);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,332,86,88]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,a*b=b*a,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations
Export