Copied to
clipboard

G = C8:6D4order 64 = 26

3rd semidirect product of C8 and D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C8:6D4, C4:1M4(2), C42.70C22, C4:C8:16C2, (C4xC8):15C2, C4:C4.8C4, (C2xD4).9C4, (C4xD4).3C2, C2.11(C4xD4), C4.78(C2xD4), C22:C8:14C2, C2.8(C8oD4), C22:C4.5C4, C4.53(C4oD4), C23.12(C2xC4), (C2xM4(2)):15C2, (C2xC4).155C23, (C2xC8).101C22, C2.10(C2xM4(2)), C22.48(C22xC4), (C22xC4).41C22, (C2xC4).29(C2xC4), SmallGroup(64,117)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C8:6D4
C1C2C4C2xC4C2xC8C2xM4(2) — C8:6D4
C1C22 — C8:6D4
C1C2xC4 — C8:6D4
C1C2C2C2xC4 — C8:6D4

Generators and relations for C8:6D4
 G = < a,b,c | a8=b4=c2=1, ab=ba, cac=a5, cbc=b-1 >

Subgroups: 89 in 61 conjugacy classes, 37 normal (19 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C2xD4, C4xC8, C22:C8, C4:C8, C4xD4, C2xM4(2), C8:6D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, M4(2), C22xC4, C2xD4, C4oD4, C4xD4, C2xM4(2), C8oD4, C8:6D4

Character table of C8:6D4

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H8I8J8K8L
 size 1111441111222244222222224444
ρ11111111111111111111111111111    trivial
ρ21111-1-111111111-1-111111111-1-1-1-1    linear of order 2
ρ311111-11111-1-1-1-1-111-11-111-1-11-11-1    linear of order 2
ρ41111-111111-1-1-1-11-11-11-111-1-1-11-11    linear of order 2
ρ51111-1-111111111-1-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ61111111111111111-1-1-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ71111-111111-1-1-1-11-1-11-11-1-1111-11-1    linear of order 2
ρ811111-11111-1-1-1-1-11-11-11-1-111-11-11    linear of order 2
ρ91111-11-1-1-1-11-1-11-11-iiii-ii-i-ii-i-ii    linear of order 4
ρ1011111-1-1-1-1-11-1-111-1-iiii-ii-i-i-iii-i    linear of order 4
ρ111111-11-1-1-1-11-1-11-11i-i-i-ii-iii-iii-i    linear of order 4
ρ1211111-1-1-1-1-11-1-111-1i-i-i-ii-iiii-i-ii    linear of order 4
ρ131111-1-1-1-1-1-1-111-111-i-ii-i-iiiiii-i-i    linear of order 4
ρ14111111-1-1-1-1-111-1-1-1-i-ii-i-iiii-i-iii    linear of order 4
ρ151111-1-1-1-1-1-1-111-111ii-iii-i-i-i-i-iii    linear of order 4
ρ16111111-1-1-1-1-111-1-1-1ii-iii-i-i-iii-i-i    linear of order 4
ρ172-22-200-22-2200000020-20-22000000    orthogonal lifted from D4
ρ182-22-200-22-22000000-20202-2000000    orthogonal lifted from D4
ρ1922-2-2002i-2i-2i2i-2i2-22i00000000000000    complex lifted from M4(2)
ρ2022-2-200-2i2i2i-2i2i2-2-2i00000000000000    complex lifted from M4(2)
ρ2122-2-200-2i2i2i-2i-2i-222i00000000000000    complex lifted from M4(2)
ρ2222-2-2002i-2i-2i2i2i-22-2i00000000000000    complex lifted from M4(2)
ρ232-22-2002-22-20000002i02i0-2i-2i000000    complex lifted from C4oD4
ρ242-22-2002-22-2000000-2i0-2i02i2i000000    complex lifted from C4oD4
ρ252-2-2200-2i-2i2i2i000000085080087830000    complex lifted from C8oD4
ρ262-2-22002i2i-2i-2i000000083087008850000    complex lifted from C8oD4
ρ272-2-2200-2i-2i2i2i000000080850083870000    complex lifted from C8oD4
ρ282-2-22002i2i-2i-2i000000087083008580000    complex lifted from C8oD4

Smallest permutation representation of C8:6D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 18 25)(2 15 19 26)(3 16 20 27)(4 9 21 28)(5 10 22 29)(6 11 23 30)(7 12 24 31)(8 13 17 32)
(1 25)(2 30)(3 27)(4 32)(5 29)(6 26)(7 31)(8 28)(9 17)(10 22)(11 19)(12 24)(13 21)(14 18)(15 23)(16 20)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,18,25)(2,15,19,26)(3,16,20,27)(4,9,21,28)(5,10,22,29)(6,11,23,30)(7,12,24,31)(8,13,17,32), (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,18,25)(2,15,19,26)(3,16,20,27)(4,9,21,28)(5,10,22,29)(6,11,23,30)(7,12,24,31)(8,13,17,32), (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,18,25),(2,15,19,26),(3,16,20,27),(4,9,21,28),(5,10,22,29),(6,11,23,30),(7,12,24,31),(8,13,17,32)], [(1,25),(2,30),(3,27),(4,32),(5,29),(6,26),(7,31),(8,28),(9,17),(10,22),(11,19),(12,24),(13,21),(14,18),(15,23),(16,20)]])

C8:6D4 is a maximal subgroup of
C8.31D8  C8:15SD16  Q8:2M4(2)  C8.D8  C8:3SD16  C8:4SD16  C8.8SD16  C42.248C23  C42.250C23  C42.252C23  C42.254C23  C42.265C23  C42.681C23  M4(2):22D4  D4xM4(2)  M4(2):23D4  C42.290C23  C42.291C23  C42.292C23  C42.294C23  Q8:6M4(2)  D4:7M4(2)  C42.693C23  C42.297C23  C42.299C23  C42.694C23  C42.301C23  C42.698C23  Q8:7M4(2)  C42.308C23  C42.309C23  C42.310C23  D8:4D4  D8:5D4  SD16:1D4  SD16:2D4  SD16:3D4  Q16:4D4  Q16:5D4  C42.471C23  C42.472C23  C42.473C23  C42.474C23  C42.475C23  C42.476C23  C42.477C23  C42.478C23  C42.479C23  C42.480C23  C42.481C23  C42.482C23  C42.492C23  C42.493C23  C42.494C23  C42.495C23  C42.496C23  C42.497C23  C42.498C23  Dic5:2M4(2)  C40:18D4
 C8:D4p: C8:9D8  C8:6D8  C8:D8  C8:2D8  C8:6D12  C8:6D20  C8:6D28 ...
 C4p:M4(2): C8:9SD16  C8:M4(2)  C8:3M4(2)  C12:2M4(2)  C12:3M4(2)  C20:6M4(2)  C20:7M4(2)  C20:M4(2) ...
 D2p:C8:C2: D4:2M4(2)  Dic3:M4(2)  C24:21D4  Dic5:M4(2)  Dic7:M4(2)  C56:18D4 ...
C8:6D4 is a maximal quotient of
C8:6Q16  C8.M4(2)  (C2xC8).195D4  C23:2M4(2)  (C2xC8).Q8  C22:C4:4C8  C23.9M4(2)  C42.61Q8  C42.325D4
 C8:D4p: C8:6D8  C8:6D12  C8:6D20  C8:6D28 ...
 C4p:M4(2): C8:9SD16  C8:M4(2)  C8:3M4(2)  C12:2M4(2)  C12:3M4(2)  C20:6M4(2)  C20:7M4(2)  C20:M4(2) ...
 C2p.(C4xD4): C23.17C42  C4:C8:13C4  Dic3:M4(2)  C24:21D4  Dic5:2M4(2)  C40:18D4  Dic5:M4(2)  Dic7:M4(2) ...

Matrix representation of C8:6D4 in GL4(F17) generated by

51500
21200
00130
00013
,
101300
4700
0018
00416
,
101300
12700
0018
00016
G:=sub<GL(4,GF(17))| [5,2,0,0,15,12,0,0,0,0,13,0,0,0,0,13],[10,4,0,0,13,7,0,0,0,0,1,4,0,0,8,16],[10,12,0,0,13,7,0,0,0,0,1,0,0,0,8,16] >;

C8:6D4 in GAP, Magma, Sage, TeX

C_8\rtimes_6D_4
% in TeX

G:=Group("C8:6D4");
// GroupNames label

G:=SmallGroup(64,117);
// by ID

G=gap.SmallGroup(64,117);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,332,86,88]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=c^2=1,a*b=b*a,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations

Export

Character table of C8:6D4 in TeX

׿
x
:
Z
F
o
wr
Q
<