p-group, metabelian, nilpotent (class 2), monomial
Aliases: C8⋊9D4, C22⋊1M4(2), C42.8C22, C4⋊C8⋊15C2, C4⋊C4.7C4, C8⋊C4⋊9C2, (C4×D4).2C2, (C2×D4).8C4, C2.10(C4×D4), C4.77(C2×D4), C22⋊C8⋊13C2, (C22×C8)⋊11C2, C2.7(C8○D4), C22⋊C4.4C4, C4.52(C4○D4), C23.11(C2×C4), C2.9(C2×M4(2)), (C2×M4(2))⋊14C2, (C2×C8).100C22, (C2×C4).154C23, C22.47(C22×C4), (C22×C4).96C22, (C2×C4).36(C2×C4), SmallGroup(64,116)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊9D4
G = < a,b,c | a8=b4=c2=1, bab-1=cac=a5, cbc=b-1 >
Subgroups: 89 in 62 conjugacy classes, 37 normal (33 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C8⋊9D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C4×D4, C2×M4(2), C8○D4, C8⋊9D4
Character table of C8⋊9D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | i | -i | i | i | -i | i | -i | -i | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -i | i | -i | -i | i | -i | i | i | -i | i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -i | -i | i | i | i | -i | i | -i | -i | i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | -i | i | -i | i | i | i | -i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | i | -i | i | -i | -i | -i | i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | i | i | -i | -i | -i | i | -i | i | i | -i | -i | i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2i | -2i | 2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2i | -2i | 2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2i | 2i | -2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 2i | 2i | -2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ87 | 0 | 0 | 0 | 2ζ85 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ85 | 0 | 0 | 0 | 2ζ87 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ83 | 0 | 0 | 0 | 2ζ8 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ8 | 0 | 0 | 0 | 2ζ83 | 0 | 0 | 0 | 0 | complex lifted from C8○D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 26 23 11)(2 31 24 16)(3 28 17 13)(4 25 18 10)(5 30 19 15)(6 27 20 12)(7 32 21 9)(8 29 22 14)
(2 6)(4 8)(9 32)(10 29)(11 26)(12 31)(13 28)(14 25)(15 30)(16 27)(18 22)(20 24)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,23,11)(2,31,24,16)(3,28,17,13)(4,25,18,10)(5,30,19,15)(6,27,20,12)(7,32,21,9)(8,29,22,14), (2,6)(4,8)(9,32)(10,29)(11,26)(12,31)(13,28)(14,25)(15,30)(16,27)(18,22)(20,24)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,23,11)(2,31,24,16)(3,28,17,13)(4,25,18,10)(5,30,19,15)(6,27,20,12)(7,32,21,9)(8,29,22,14), (2,6)(4,8)(9,32)(10,29)(11,26)(12,31)(13,28)(14,25)(15,30)(16,27)(18,22)(20,24) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,26,23,11),(2,31,24,16),(3,28,17,13),(4,25,18,10),(5,30,19,15),(6,27,20,12),(7,32,21,9),(8,29,22,14)], [(2,6),(4,8),(9,32),(10,29),(11,26),(12,31),(13,28),(14,25),(15,30),(16,27),(18,22),(20,24)]])
C8⋊9D4 is a maximal subgroup of
C42.290C23 C42.291C23 C42.292C23 C42.293C23 C42.294C23 C23⋊3M4(2) C42.297C23 C42.298C23 C42.299C23 C42.300C23 C42.301C23 C42.698C23 C42.307C23 C42.308C23 C42.309C23 C42.310C23 D8⋊9D4 SD16⋊D4 SD16⋊6D4 D8⋊10D4 SD16⋊7D4 SD16⋊8D4 Q16⋊9D4 Q16⋊10D4 C42.41C23 C42.42C23 C42.43C23 C42.44C23 C42.45C23 C42.46C23 C42.47C23 C42.48C23 C42.49C23 C42.50C23 C42.51C23 C42.52C23 C42.53C23 C42.54C23 C42.55C23 C42.56C23 C42.57C23 C42.58C23 C42.59C23 C42.60C23 C42.61C23 C42.62C23 C42.63C23 C42.64C23 C8⋊S4
D2p⋊M4(2): D4⋊6M4(2) D4⋊7M4(2) D4⋊8M4(2) C8⋊9D12 D6⋊2M4(2) D6⋊3M4(2) C24⋊D4 C8⋊9D20 ...
C2p.(C4×D4): C42.264C23 C42.265C23 C42.266C23 M4(2)⋊22D4 D4×M4(2) M4(2)⋊23D4 C3⋊C8⋊26D4 C42.47D6 ...
C8⋊9D4 is a maximal quotient of
C8⋊12SD16 C8⋊15SD16 C8⋊9Q16 D4.M4(2) Q8.M4(2) Q8⋊2M4(2) C23.21M4(2) (C2×C8).195D4 C23.22M4(2) C23⋊2M4(2) C4⋊C4⋊3C8 (C2×C8).Q8 C22⋊C4⋊4C8 C23.9M4(2)
D2p⋊M4(2): C8⋊9D8 D4⋊2M4(2) C8⋊9D12 D6⋊2M4(2) D6⋊3M4(2) C24⋊D4 C8⋊9D20 D10⋊4M4(2) ...
C42.D2p: C42.27Q8 C42.109D4 C42.47D6 C42.47D10 C42.47D14 ...
C2p.(C4×D4): C23.36C42 C23.17C42 C4⋊C8⋊14C4 C3⋊C8⋊26D4 C24⋊33D4 C5⋊2C8⋊26D4 C40⋊32D4 C5⋊C8⋊D4 ...
Matrix representation of C8⋊9D4 ►in GL4(𝔽17) generated by
13 | 15 | 0 | 0 |
6 | 4 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 |
13 | 16 | 0 | 0 |
0 | 0 | 0 | 9 |
0 | 0 | 15 | 0 |
1 | 0 | 0 | 0 |
13 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [13,6,0,0,15,4,0,0,0,0,0,4,0,0,1,0],[1,13,0,0,0,16,0,0,0,0,0,15,0,0,9,0],[1,13,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;
C8⋊9D4 in GAP, Magma, Sage, TeX
C_8\rtimes_9D_4
% in TeX
G:=Group("C8:9D4");
// GroupNames label
G:=SmallGroup(64,116);
// by ID
G=gap.SmallGroup(64,116);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,86,88]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,b*a*b^-1=c*a*c=a^5,c*b*c=b^-1>;
// generators/relations
Export