d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C2×C6 | 24 | S3xC2xC6 | 72,48 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C6)⋊1S3 = C3×S4 | φ: S3/C1 → S3 ⊆ Aut C2×C6 | 12 | 3 | (C2xC6):1S3 | 72,42 |
(C2×C6)⋊2S3 = C3⋊S4 | φ: S3/C1 → S3 ⊆ Aut C2×C6 | 12 | 6+ | (C2xC6):2S3 | 72,43 |
(C2×C6)⋊3S3 = C3×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 12 | 2 | (C2xC6):3S3 | 72,30 |
(C2×C6)⋊4S3 = C32⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 36 | (C2xC6):4S3 | 72,35 | |
(C2×C6)⋊5S3 = C22×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 36 | (C2xC6):5S3 | 72,49 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C6).S3 = C3.S4 | φ: S3/C1 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).S3 | 72,15 |
(C2×C6).2S3 = C2×Dic9 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 72 | (C2xC6).2S3 | 72,7 | |
(C2×C6).3S3 = C9⋊D4 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 36 | 2 | (C2xC6).3S3 | 72,8 |
(C2×C6).4S3 = C22×D9 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 36 | (C2xC6).4S3 | 72,17 | |
(C2×C6).5S3 = C2×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C6 | 72 | (C2xC6).5S3 | 72,34 | |
(C2×C6).6S3 = C6×Dic3 | central extension (φ=1) | 24 | (C2xC6).6S3 | 72,29 |