Extensions 1→N→G→Q→1 with N=C2×C6 and Q=S3

Direct product G=N×Q with N=C2×C6 and Q=S3
dρLabelID
S3×C2×C624S3xC2xC672,48

Semidirect products G=N:Q with N=C2×C6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1S3 = C3×S4φ: S3/C1S3 ⊆ Aut C2×C6123(C2xC6):1S372,42
(C2×C6)⋊2S3 = C3⋊S4φ: S3/C1S3 ⊆ Aut C2×C6126+(C2xC6):2S372,43
(C2×C6)⋊3S3 = C3×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C6122(C2xC6):3S372,30
(C2×C6)⋊4S3 = C327D4φ: S3/C3C2 ⊆ Aut C2×C636(C2xC6):4S372,35
(C2×C6)⋊5S3 = C22×C3⋊S3φ: S3/C3C2 ⊆ Aut C2×C636(C2xC6):5S372,49

Non-split extensions G=N.Q with N=C2×C6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C6).S3 = C3.S4φ: S3/C1S3 ⊆ Aut C2×C6186+(C2xC6).S372,15
(C2×C6).2S3 = C2×Dic9φ: S3/C3C2 ⊆ Aut C2×C672(C2xC6).2S372,7
(C2×C6).3S3 = C9⋊D4φ: S3/C3C2 ⊆ Aut C2×C6362(C2xC6).3S372,8
(C2×C6).4S3 = C22×D9φ: S3/C3C2 ⊆ Aut C2×C636(C2xC6).4S372,17
(C2×C6).5S3 = C2×C3⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C672(C2xC6).5S372,34
(C2×C6).6S3 = C6×Dic3central extension (φ=1)24(C2xC6).6S372,29

׿
×
𝔽