Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C8

Direct product G=N×Q with N=C22 and Q=C2×C8

Semidirect products G=N:Q with N=C22 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C221(C2×C8) = C8×D4φ: C2×C8/C8C2 ⊆ Aut C2232C2^2:1(C2xC8)64,115
C222(C2×C8) = C2×C22⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2232C2^2:2(C2xC8)64,87

Non-split extensions G=N.Q with N=C22 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C8) = D4○C16φ: C2×C8/C8C2 ⊆ Aut C22322C2^2.1(C2xC8)64,185
C22.2(C2×C8) = C23⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2216C2^2.2(C2xC8)64,4
C22.3(C2×C8) = C22.M4(2)φ: C2×C8/C2×C4C2 ⊆ Aut C2232C2^2.3(C2xC8)64,5
C22.4(C2×C8) = C23.C8φ: C2×C8/C2×C4C2 ⊆ Aut C22164C2^2.4(C2xC8)64,30
C22.5(C2×C8) = C42.12C4φ: C2×C8/C2×C4C2 ⊆ Aut C2232C2^2.5(C2xC8)64,112
C22.6(C2×C8) = C22.7C42central extension (φ=1)64C2^2.6(C2xC8)64,17
C22.7(C2×C8) = C165C4central extension (φ=1)64C2^2.7(C2xC8)64,27
C22.8(C2×C8) = C22⋊C16central extension (φ=1)32C2^2.8(C2xC8)64,29
C22.9(C2×C8) = C4⋊C16central extension (φ=1)64C2^2.9(C2xC8)64,44
C22.10(C2×C8) = C2×C4⋊C8central extension (φ=1)64C2^2.10(C2xC8)64,103
C22.11(C2×C8) = C2×M5(2)central extension (φ=1)32C2^2.11(C2xC8)64,184