p-group, metacyclic, nilpotent (class 2), monomial
Aliases: C4⋊C16, C8.7Q8, C8.28D4, C42.7C4, C2.3M5(2), C4.11M4(2), (C4×C8).2C2, (C2×C4).4C8, (C2×C8).7C4, C2.2(C4⋊C8), (C2×C16).2C2, C2.2(C2×C16), C4.19(C4⋊C4), C22.9(C2×C8), (C2×C8).108C22, (C2×C4).82(C2×C4), SmallGroup(64,44)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊C16
G = < a,b | a4=b16=1, bab-1=a-1 >
(1 32 38 58)(2 59 39 17)(3 18 40 60)(4 61 41 19)(5 20 42 62)(6 63 43 21)(7 22 44 64)(8 49 45 23)(9 24 46 50)(10 51 47 25)(11 26 48 52)(12 53 33 27)(13 28 34 54)(14 55 35 29)(15 30 36 56)(16 57 37 31)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,32,38,58)(2,59,39,17)(3,18,40,60)(4,61,41,19)(5,20,42,62)(6,63,43,21)(7,22,44,64)(8,49,45,23)(9,24,46,50)(10,51,47,25)(11,26,48,52)(12,53,33,27)(13,28,34,54)(14,55,35,29)(15,30,36,56)(16,57,37,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;
G:=Group( (1,32,38,58)(2,59,39,17)(3,18,40,60)(4,61,41,19)(5,20,42,62)(6,63,43,21)(7,22,44,64)(8,49,45,23)(9,24,46,50)(10,51,47,25)(11,26,48,52)(12,53,33,27)(13,28,34,54)(14,55,35,29)(15,30,36,56)(16,57,37,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,32,38,58),(2,59,39,17),(3,18,40,60),(4,61,41,19),(5,20,42,62),(6,63,43,21),(7,22,44,64),(8,49,45,23),(9,24,46,50),(10,51,47,25),(11,26,48,52),(12,53,33,27),(13,28,34,54),(14,55,35,29),(15,30,36,56),(16,57,37,31)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])
C4⋊C16 is a maximal subgroup of
C8.31D8 C8.17Q16 C8.30D8 C4.D16 C8.27D8 C8.16Q16 C4.10D16 C4.6Q32 C4⋊M5(2) C4⋊C4.7C8 C8.12M4(2) D4×C16 C16⋊9D4 C16⋊6D4 Q8×C16 D8⋊2D4 Q16⋊2D4 D8.4D4 Q16.4D4 D8.5D4 Q16.5D4 D8⋊1Q8 Q16⋊Q8 D8⋊Q8 C4.Q32 D8.Q8 Q16.Q8
C4p⋊C16: C8⋊2C16 C8.36D8 C12⋊C16 C20⋊3C16 C20⋊C16 C28⋊C16 ...
C2p.M5(2): D4⋊C16 Q8⋊C16 C42.13C8 C42.6C8 C16⋊4Q8 Dic3⋊C16 C40.88D4 C10.M5(2) ...
C4⋊C16 is a maximal quotient of
C22.7M5(2) C10.M5(2)
C4p⋊C16: C8⋊2C16 C8.36D8 C12⋊C16 C20⋊3C16 C20⋊C16 C28⋊C16 ...
C8p.D4: C4⋊C32 C8.C16 Dic3⋊C16 C40.88D4 Dic7⋊C16 ...
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | ||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C16 | D4 | Q8 | M4(2) | M5(2) |
kernel | C4⋊C16 | C4×C8 | C2×C16 | C42 | C2×C8 | C2×C4 | C4 | C8 | C8 | C4 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 8 | 16 | 1 | 1 | 2 | 4 |
Matrix representation of C4⋊C16 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 1 | 13 |
0 | 9 | 16 |
14 | 0 | 0 |
0 | 10 | 11 |
0 | 0 | 7 |
G:=sub<GL(3,GF(17))| [1,0,0,0,1,9,0,13,16],[14,0,0,0,10,0,0,11,7] >;
C4⋊C16 in GAP, Magma, Sage, TeX
C_4\rtimes C_{16}
% in TeX
G:=Group("C4:C16");
// GroupNames label
G:=SmallGroup(64,44);
// by ID
G=gap.SmallGroup(64,44);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,31,69,88]);
// Polycyclic
G:=Group<a,b|a^4=b^16=1,b*a*b^-1=a^-1>;
// generators/relations
Export