Extensions 1→N→G→Q→1 with N=M4(2) and Q=C4

Direct product G=N×Q with N=M4(2) and Q=C4
dρLabelID
C4×M4(2)32C4xM4(2)64,85

Semidirect products G=N:Q with N=M4(2) and Q=C4
extensionφ:Q→Out NdρLabelID
M4(2)⋊1C4 = M4(2)⋊C4φ: C4/C2C2 ⊆ Out M4(2)32M4(2):1C464,109
M4(2)⋊2C4 = C426C4φ: C4/C2C2 ⊆ Out M4(2)16M4(2):2C464,20
M4(2)⋊3C4 = C22.C42φ: C4/C2C2 ⊆ Out M4(2)32M4(2):3C464,24
M4(2)⋊4C4 = M4(2)⋊4C4φ: C4/C2C2 ⊆ Out M4(2)164M4(2):4C464,25
M4(2)⋊5C4 = C82M4(2)φ: trivial image32M4(2):5C464,86

Non-split extensions G=N.Q with N=M4(2) and Q=C4
extensionφ:Q→Out NdρLabelID
M4(2).1C4 = M4(2).C4φ: C4/C2C2 ⊆ Out M4(2)164M4(2).1C464,111
M4(2).2C4 = C4.C42φ: C4/C2C2 ⊆ Out M4(2)32M4(2).2C464,22
M4(2).3C4 = D4.C8φ: C4/C2C2 ⊆ Out M4(2)322M4(2).3C464,31
M4(2).4C4 = D4○C16φ: trivial image322M4(2).4C464,185

׿
×
𝔽