metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D43, C43⋊C2, sometimes denoted D86 or Dih43 or Dih86, SmallGroup(86,1)
Series: Derived ►Chief ►Lower central ►Upper central
C43 — D43 |
Generators and relations for D43
G = < a,b | a43=b2=1, bab=a-1 >
Character table of D43
class | 1 | 2 | 43A | 43B | 43C | 43D | 43E | 43F | 43G | 43H | 43I | 43J | 43K | 43L | 43M | 43N | 43O | 43P | 43Q | 43R | 43S | 43T | 43U | |
size | 1 | 43 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ4341+ζ432 | ζ4340+ζ433 | ζ4339+ζ434 | ζ4338+ζ435 | ζ4337+ζ436 | ζ4336+ζ437 | ζ4335+ζ438 | ζ4334+ζ439 | ζ4333+ζ4310 | ζ4332+ζ4311 | ζ4331+ζ4312 | ζ4330+ζ4313 | ζ4329+ζ4314 | ζ4328+ζ4315 | ζ4327+ζ4316 | ζ4326+ζ4317 | ζ4325+ζ4318 | ζ4324+ζ4319 | ζ4323+ζ4320 | ζ4322+ζ4321 | ζ4342+ζ43 | orthogonal faithful |
ρ4 | 2 | 0 | ζ4333+ζ4310 | ζ4328+ζ4315 | ζ4323+ζ4320 | ζ4325+ζ4318 | ζ4330+ζ4313 | ζ4335+ζ438 | ζ4340+ζ433 | ζ4341+ζ432 | ζ4336+ζ437 | ζ4331+ζ4312 | ζ4326+ζ4317 | ζ4322+ζ4321 | ζ4327+ζ4316 | ζ4332+ζ4311 | ζ4337+ζ436 | ζ4342+ζ43 | ζ4339+ζ434 | ζ4334+ζ439 | ζ4329+ζ4314 | ζ4324+ζ4319 | ζ4338+ζ435 | orthogonal faithful |
ρ5 | 2 | 0 | ζ4327+ζ4316 | ζ4324+ζ4319 | ζ4332+ζ4311 | ζ4340+ζ433 | ζ4338+ζ435 | ζ4330+ζ4313 | ζ4322+ζ4321 | ζ4329+ζ4314 | ζ4337+ζ436 | ζ4341+ζ432 | ζ4333+ζ4310 | ζ4325+ζ4318 | ζ4326+ζ4317 | ζ4334+ζ439 | ζ4342+ζ43 | ζ4336+ζ437 | ζ4328+ζ4315 | ζ4323+ζ4320 | ζ4331+ζ4312 | ζ4339+ζ434 | ζ4335+ζ438 | orthogonal faithful |
ρ6 | 2 | 0 | ζ4329+ζ4314 | ζ4322+ζ4321 | ζ4328+ζ4315 | ζ4335+ζ438 | ζ4342+ζ43 | ζ4337+ζ436 | ζ4330+ζ4313 | ζ4323+ζ4320 | ζ4327+ζ4316 | ζ4334+ζ439 | ζ4341+ζ432 | ζ4338+ζ435 | ζ4331+ζ4312 | ζ4324+ζ4319 | ζ4326+ζ4317 | ζ4333+ζ4310 | ζ4340+ζ433 | ζ4339+ζ434 | ζ4332+ζ4311 | ζ4325+ζ4318 | ζ4336+ζ437 | orthogonal faithful |
ρ7 | 2 | 0 | ζ4337+ζ436 | ζ4334+ζ439 | ζ4331+ζ4312 | ζ4328+ζ4315 | ζ4325+ζ4318 | ζ4322+ζ4321 | ζ4324+ζ4319 | ζ4327+ζ4316 | ζ4330+ζ4313 | ζ4333+ζ4310 | ζ4336+ζ437 | ζ4339+ζ434 | ζ4342+ζ43 | ζ4341+ζ432 | ζ4338+ζ435 | ζ4335+ζ438 | ζ4332+ζ4311 | ζ4329+ζ4314 | ζ4326+ζ4317 | ζ4323+ζ4320 | ζ4340+ζ433 | orthogonal faithful |
ρ8 | 2 | 0 | ζ4331+ζ4312 | ζ4325+ζ4318 | ζ4324+ζ4319 | ζ4330+ζ4313 | ζ4336+ζ437 | ζ4342+ζ43 | ζ4338+ζ435 | ζ4332+ζ4311 | ζ4326+ζ4317 | ζ4323+ζ4320 | ζ4329+ζ4314 | ζ4335+ζ438 | ζ4341+ζ432 | ζ4339+ζ434 | ζ4333+ζ4310 | ζ4327+ζ4316 | ζ4322+ζ4321 | ζ4328+ζ4315 | ζ4334+ζ439 | ζ4340+ζ433 | ζ4337+ζ436 | orthogonal faithful |
ρ9 | 2 | 0 | ζ4324+ζ4319 | ζ4336+ζ437 | ζ4338+ζ435 | ζ4326+ζ4317 | ζ4329+ζ4314 | ζ4341+ζ432 | ζ4333+ζ4310 | ζ4322+ζ4321 | ζ4334+ζ439 | ζ4340+ζ433 | ζ4328+ζ4315 | ζ4327+ζ4316 | ζ4339+ζ434 | ζ4335+ζ438 | ζ4323+ζ4320 | ζ4332+ζ4311 | ζ4342+ζ43 | ζ4330+ζ4313 | ζ4325+ζ4318 | ζ4337+ζ436 | ζ4331+ζ4312 | orthogonal faithful |
ρ10 | 2 | 0 | ζ4322+ζ4321 | ζ4333+ζ4310 | ζ4342+ζ43 | ζ4331+ζ4312 | ζ4323+ζ4320 | ζ4334+ζ439 | ζ4341+ζ432 | ζ4330+ζ4313 | ζ4324+ζ4319 | ζ4335+ζ438 | ζ4340+ζ433 | ζ4329+ζ4314 | ζ4325+ζ4318 | ζ4336+ζ437 | ζ4339+ζ434 | ζ4328+ζ4315 | ζ4326+ζ4317 | ζ4337+ζ436 | ζ4338+ζ435 | ζ4327+ζ4316 | ζ4332+ζ4311 | orthogonal faithful |
ρ11 | 2 | 0 | ζ4323+ζ4320 | ζ4330+ζ4313 | ζ4340+ζ433 | ζ4336+ζ437 | ζ4326+ζ4317 | ζ4327+ζ4316 | ζ4337+ζ436 | ζ4339+ζ434 | ζ4329+ζ4314 | ζ4324+ζ4319 | ζ4334+ζ439 | ζ4342+ζ43 | ζ4332+ζ4311 | ζ4322+ζ4321 | ζ4331+ζ4312 | ζ4341+ζ432 | ζ4335+ζ438 | ζ4325+ζ4318 | ζ4328+ζ4315 | ζ4338+ζ435 | ζ4333+ζ4310 | orthogonal faithful |
ρ12 | 2 | 0 | ζ4342+ζ43 | ζ4323+ζ4320 | ζ4341+ζ432 | ζ4324+ζ4319 | ζ4340+ζ433 | ζ4325+ζ4318 | ζ4339+ζ434 | ζ4326+ζ4317 | ζ4338+ζ435 | ζ4327+ζ4316 | ζ4337+ζ436 | ζ4328+ζ4315 | ζ4336+ζ437 | ζ4329+ζ4314 | ζ4335+ζ438 | ζ4330+ζ4313 | ζ4334+ζ439 | ζ4331+ζ4312 | ζ4333+ζ4310 | ζ4332+ζ4311 | ζ4322+ζ4321 | orthogonal faithful |
ρ13 | 2 | 0 | ζ4338+ζ435 | ζ4329+ζ4314 | ζ4333+ζ4310 | ζ4334+ζ439 | ζ4328+ζ4315 | ζ4339+ζ434 | ζ4323+ζ4320 | ζ4342+ζ43 | ζ4325+ζ4318 | ζ4337+ζ436 | ζ4330+ζ4313 | ζ4332+ζ4311 | ζ4335+ζ438 | ζ4327+ζ4316 | ζ4340+ζ433 | ζ4322+ζ4321 | ζ4341+ζ432 | ζ4326+ζ4317 | ζ4336+ζ437 | ζ4331+ζ4312 | ζ4324+ζ4319 | orthogonal faithful |
ρ14 | 2 | 0 | ζ4335+ζ438 | ζ4331+ζ4312 | ζ4327+ζ4316 | ζ4323+ζ4320 | ζ4324+ζ4319 | ζ4328+ζ4315 | ζ4332+ζ4311 | ζ4336+ζ437 | ζ4340+ζ433 | ζ4342+ζ43 | ζ4338+ζ435 | ζ4334+ζ439 | ζ4330+ζ4313 | ζ4326+ζ4317 | ζ4322+ζ4321 | ζ4325+ζ4318 | ζ4329+ζ4314 | ζ4333+ζ4310 | ζ4337+ζ436 | ζ4341+ζ432 | ζ4339+ζ434 | orthogonal faithful |
ρ15 | 2 | 0 | ζ4332+ζ4311 | ζ4338+ζ435 | ζ4322+ζ4321 | ζ4337+ζ436 | ζ4333+ζ4310 | ζ4326+ζ4317 | ζ4342+ζ43 | ζ4328+ζ4315 | ζ4331+ζ4312 | ζ4339+ζ434 | ζ4323+ζ4320 | ζ4336+ζ437 | ζ4334+ζ439 | ζ4325+ζ4318 | ζ4341+ζ432 | ζ4329+ζ4314 | ζ4330+ζ4313 | ζ4340+ζ433 | ζ4324+ζ4319 | ζ4335+ζ438 | ζ4327+ζ4316 | orthogonal faithful |
ρ16 | 2 | 0 | ζ4328+ζ4315 | ζ4342+ζ43 | ζ4330+ζ4313 | ζ4327+ζ4316 | ζ4341+ζ432 | ζ4331+ζ4312 | ζ4326+ζ4317 | ζ4340+ζ433 | ζ4332+ζ4311 | ζ4325+ζ4318 | ζ4339+ζ434 | ζ4333+ζ4310 | ζ4324+ζ4319 | ζ4338+ζ435 | ζ4334+ζ439 | ζ4323+ζ4320 | ζ4337+ζ436 | ζ4335+ζ438 | ζ4322+ζ4321 | ζ4336+ζ437 | ζ4329+ζ4314 | orthogonal faithful |
ρ17 | 2 | 0 | ζ4336+ζ437 | ζ4332+ζ4311 | ζ4329+ζ4314 | ζ4339+ζ434 | ζ4322+ζ4321 | ζ4340+ζ433 | ζ4328+ζ4315 | ζ4333+ζ4310 | ζ4335+ζ438 | ζ4326+ζ4317 | ζ4342+ζ43 | ζ4324+ζ4319 | ζ4337+ζ436 | ζ4331+ζ4312 | ζ4330+ζ4313 | ζ4338+ζ435 | ζ4323+ζ4320 | ζ4341+ζ432 | ζ4327+ζ4316 | ζ4334+ζ439 | ζ4325+ζ4318 | orthogonal faithful |
ρ18 | 2 | 0 | ζ4325+ζ4318 | ζ4327+ζ4316 | ζ4336+ζ437 | ζ4341+ζ432 | ζ4332+ζ4311 | ζ4323+ζ4320 | ζ4329+ζ4314 | ζ4338+ζ435 | ζ4339+ζ434 | ζ4330+ζ4313 | ζ4322+ζ4321 | ζ4331+ζ4312 | ζ4340+ζ433 | ζ4337+ζ436 | ζ4328+ζ4315 | ζ4324+ζ4319 | ζ4333+ζ4310 | ζ4342+ζ43 | ζ4335+ζ438 | ζ4326+ζ4317 | ζ4334+ζ439 | orthogonal faithful |
ρ19 | 2 | 0 | ζ4330+ζ4313 | ζ4341+ζ432 | ζ4326+ζ4317 | ζ4332+ζ4311 | ζ4339+ζ434 | ζ4324+ζ4319 | ζ4334+ζ439 | ζ4337+ζ436 | ζ4322+ζ4321 | ζ4336+ζ437 | ζ4335+ζ438 | ζ4323+ζ4320 | ζ4338+ζ435 | ζ4333+ζ4310 | ζ4325+ζ4318 | ζ4340+ζ433 | ζ4331+ζ4312 | ζ4327+ζ4316 | ζ4342+ζ43 | ζ4329+ζ4314 | ζ4328+ζ4315 | orthogonal faithful |
ρ20 | 2 | 0 | ζ4326+ζ4317 | ζ4339+ζ434 | ζ4334+ζ439 | ζ4322+ζ4321 | ζ4335+ζ438 | ζ4338+ζ435 | ζ4325+ζ4318 | ζ4331+ζ4312 | ζ4342+ζ43 | ζ4329+ζ4314 | ζ4327+ζ4316 | ζ4340+ζ433 | ζ4333+ζ4310 | ζ4323+ζ4320 | ζ4336+ζ437 | ζ4337+ζ436 | ζ4324+ζ4319 | ζ4332+ζ4311 | ζ4341+ζ432 | ζ4328+ζ4315 | ζ4330+ζ4313 | orthogonal faithful |
ρ21 | 2 | 0 | ζ4334+ζ439 | ζ4335+ζ438 | ζ4325+ζ4318 | ζ4342+ζ43 | ζ4327+ζ4316 | ζ4333+ζ4310 | ζ4336+ζ437 | ζ4324+ζ4319 | ζ4341+ζ432 | ζ4328+ζ4315 | ζ4332+ζ4311 | ζ4337+ζ436 | ζ4323+ζ4320 | ζ4340+ζ433 | ζ4329+ζ4314 | ζ4331+ζ4312 | ζ4338+ζ435 | ζ4322+ζ4321 | ζ4339+ζ434 | ζ4330+ζ4313 | ζ4326+ζ4317 | orthogonal faithful |
ρ22 | 2 | 0 | ζ4340+ζ433 | ζ4326+ζ4317 | ζ4337+ζ436 | ζ4329+ζ4314 | ζ4334+ζ439 | ζ4332+ζ4311 | ζ4331+ζ4312 | ζ4335+ζ438 | ζ4328+ζ4315 | ζ4338+ζ435 | ζ4325+ζ4318 | ζ4341+ζ432 | ζ4322+ζ4321 | ζ4342+ζ43 | ζ4324+ζ4319 | ζ4339+ζ434 | ζ4327+ζ4316 | ζ4336+ζ437 | ζ4330+ζ4313 | ζ4333+ζ4310 | ζ4323+ζ4320 | orthogonal faithful |
ρ23 | 2 | 0 | ζ4339+ζ434 | ζ4337+ζ436 | ζ4335+ζ438 | ζ4333+ζ4310 | ζ4331+ζ4312 | ζ4329+ζ4314 | ζ4327+ζ4316 | ζ4325+ζ4318 | ζ4323+ζ4320 | ζ4322+ζ4321 | ζ4324+ζ4319 | ζ4326+ζ4317 | ζ4328+ζ4315 | ζ4330+ζ4313 | ζ4332+ζ4311 | ζ4334+ζ439 | ζ4336+ζ437 | ζ4338+ζ435 | ζ4340+ζ433 | ζ4342+ζ43 | ζ4341+ζ432 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43)
(1 43)(2 42)(3 41)(4 40)(5 39)(6 38)(7 37)(8 36)(9 35)(10 34)(11 33)(12 32)(13 31)(14 30)(15 29)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)
G:=sub<Sym(43)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,36)(9,35)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,36)(9,35)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)], [(1,43),(2,42),(3,41),(4,40),(5,39),(6,38),(7,37),(8,36),(9,35),(10,34),(11,33),(12,32),(13,31),(14,30),(15,29),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23)]])
D43 is a maximal subgroup of
C43⋊C6 D129 D215
D43 is a maximal quotient of Dic43 D129 D215
Matrix representation of D43 ►in GL2(𝔽173) generated by
39 | 172 |
1 | 0 |
39 | 172 |
136 | 134 |
G:=sub<GL(2,GF(173))| [39,1,172,0],[39,136,172,134] >;
D43 in GAP, Magma, Sage, TeX
D_{43}
% in TeX
G:=Group("D43");
// GroupNames label
G:=SmallGroup(86,1);
// by ID
G=gap.SmallGroup(86,1);
# by ID
G:=PCGroup([2,-2,-43,337]);
// Polycyclic
G:=Group<a,b|a^43=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D43 in TeX
Character table of D43 in TeX