Copied to
clipboard

G = D215order 430 = 2·5·43

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D215, C43⋊D5, C5⋊D43, C2151C2, sometimes denoted D430 or Dih215 or Dih430, SmallGroup(430,3)

Series: Derived Chief Lower central Upper central

C1C215 — D215
C1C43C215 — D215
C215 — D215
C1

Generators and relations for D215
 G = < a,b | a215=b2=1, bab=a-1 >

215C2
43D5
5D43

Smallest permutation representation of D215
On 215 points
Generators in S215
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215)
(1 215)(2 214)(3 213)(4 212)(5 211)(6 210)(7 209)(8 208)(9 207)(10 206)(11 205)(12 204)(13 203)(14 202)(15 201)(16 200)(17 199)(18 198)(19 197)(20 196)(21 195)(22 194)(23 193)(24 192)(25 191)(26 190)(27 189)(28 188)(29 187)(30 186)(31 185)(32 184)(33 183)(34 182)(35 181)(36 180)(37 179)(38 178)(39 177)(40 176)(41 175)(42 174)(43 173)(44 172)(45 171)(46 170)(47 169)(48 168)(49 167)(50 166)(51 165)(52 164)(53 163)(54 162)(55 161)(56 160)(57 159)(58 158)(59 157)(60 156)(61 155)(62 154)(63 153)(64 152)(65 151)(66 150)(67 149)(68 148)(69 147)(70 146)(71 145)(72 144)(73 143)(74 142)(75 141)(76 140)(77 139)(78 138)(79 137)(80 136)(81 135)(82 134)(83 133)(84 132)(85 131)(86 130)(87 129)(88 128)(89 127)(90 126)(91 125)(92 124)(93 123)(94 122)(95 121)(96 120)(97 119)(98 118)(99 117)(100 116)(101 115)(102 114)(103 113)(104 112)(105 111)(106 110)(107 109)

G:=sub<Sym(215)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215), (1,215)(2,214)(3,213)(4,212)(5,211)(6,210)(7,209)(8,208)(9,207)(10,206)(11,205)(12,204)(13,203)(14,202)(15,201)(16,200)(17,199)(18,198)(19,197)(20,196)(21,195)(22,194)(23,193)(24,192)(25,191)(26,190)(27,189)(28,188)(29,187)(30,186)(31,185)(32,184)(33,183)(34,182)(35,181)(36,180)(37,179)(38,178)(39,177)(40,176)(41,175)(42,174)(43,173)(44,172)(45,171)(46,170)(47,169)(48,168)(49,167)(50,166)(51,165)(52,164)(53,163)(54,162)(55,161)(56,160)(57,159)(58,158)(59,157)(60,156)(61,155)(62,154)(63,153)(64,152)(65,151)(66,150)(67,149)(68,148)(69,147)(70,146)(71,145)(72,144)(73,143)(74,142)(75,141)(76,140)(77,139)(78,138)(79,137)(80,136)(81,135)(82,134)(83,133)(84,132)(85,131)(86,130)(87,129)(88,128)(89,127)(90,126)(91,125)(92,124)(93,123)(94,122)(95,121)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215), (1,215)(2,214)(3,213)(4,212)(5,211)(6,210)(7,209)(8,208)(9,207)(10,206)(11,205)(12,204)(13,203)(14,202)(15,201)(16,200)(17,199)(18,198)(19,197)(20,196)(21,195)(22,194)(23,193)(24,192)(25,191)(26,190)(27,189)(28,188)(29,187)(30,186)(31,185)(32,184)(33,183)(34,182)(35,181)(36,180)(37,179)(38,178)(39,177)(40,176)(41,175)(42,174)(43,173)(44,172)(45,171)(46,170)(47,169)(48,168)(49,167)(50,166)(51,165)(52,164)(53,163)(54,162)(55,161)(56,160)(57,159)(58,158)(59,157)(60,156)(61,155)(62,154)(63,153)(64,152)(65,151)(66,150)(67,149)(68,148)(69,147)(70,146)(71,145)(72,144)(73,143)(74,142)(75,141)(76,140)(77,139)(78,138)(79,137)(80,136)(81,135)(82,134)(83,133)(84,132)(85,131)(86,130)(87,129)(88,128)(89,127)(90,126)(91,125)(92,124)(93,123)(94,122)(95,121)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215)], [(1,215),(2,214),(3,213),(4,212),(5,211),(6,210),(7,209),(8,208),(9,207),(10,206),(11,205),(12,204),(13,203),(14,202),(15,201),(16,200),(17,199),(18,198),(19,197),(20,196),(21,195),(22,194),(23,193),(24,192),(25,191),(26,190),(27,189),(28,188),(29,187),(30,186),(31,185),(32,184),(33,183),(34,182),(35,181),(36,180),(37,179),(38,178),(39,177),(40,176),(41,175),(42,174),(43,173),(44,172),(45,171),(46,170),(47,169),(48,168),(49,167),(50,166),(51,165),(52,164),(53,163),(54,162),(55,161),(56,160),(57,159),(58,158),(59,157),(60,156),(61,155),(62,154),(63,153),(64,152),(65,151),(66,150),(67,149),(68,148),(69,147),(70,146),(71,145),(72,144),(73,143),(74,142),(75,141),(76,140),(77,139),(78,138),(79,137),(80,136),(81,135),(82,134),(83,133),(84,132),(85,131),(86,130),(87,129),(88,128),(89,127),(90,126),(91,125),(92,124),(93,123),(94,122),(95,121),(96,120),(97,119),(98,118),(99,117),(100,116),(101,115),(102,114),(103,113),(104,112),(105,111),(106,110),(107,109)])

109 conjugacy classes

class 1  2 5A5B43A···43U215A···215CF
order125543···43215···215
size1215222···22···2

109 irreducible representations

dim11222
type+++++
imageC1C2D5D43D215
kernelD215C215C43C5C1
# reps1122184

Matrix representation of D215 in GL2(𝔽431) generated by

205159
272150
,
205159
370226
G:=sub<GL(2,GF(431))| [205,272,159,150],[205,370,159,226] >;

D215 in GAP, Magma, Sage, TeX

D_{215}
% in TeX

G:=Group("D215");
// GroupNames label

G:=SmallGroup(430,3);
// by ID

G=gap.SmallGroup(430,3);
# by ID

G:=PCGroup([3,-2,-5,-43,49,3782]);
// Polycyclic

G:=Group<a,b|a^215=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D215 in TeX

׿
×
𝔽