Extensions 1→N→G→Q→1 with N=C22 and Q=D12

Direct product G=N×Q with N=C22 and Q=D12
dρLabelID
C22×D1248C2^2xD1296,207

Semidirect products G=N:Q with N=C22 and Q=D12
extensionφ:Q→Aut NdρLabelID
C22⋊D12 = C4⋊S4φ: D12/C4S3 ⊆ Aut C22126+C2^2:D1296,187
C222D12 = C127D4φ: D12/C12C2 ⊆ Aut C2248C2^2:2D1296,137
C223D12 = D6⋊D4φ: D12/D6C2 ⊆ Aut C2224C2^2:3D1296,89

Non-split extensions G=N.Q with N=C22 and Q=D12
extensionφ:Q→Aut NdρLabelID
C22.1D12 = C4○D24φ: D12/C12C2 ⊆ Aut C22482C2^2.1D1296,111
C22.2D12 = C23.6D6φ: D12/D6C2 ⊆ Aut C22244C2^2.2D1296,13
C22.3D12 = D12⋊C4φ: D12/D6C2 ⊆ Aut C22244C2^2.3D1296,32
C22.4D12 = C23.21D6φ: D12/D6C2 ⊆ Aut C2248C2^2.4D1296,93
C22.5D12 = C8⋊D6φ: D12/D6C2 ⊆ Aut C22244+C2^2.5D1296,115
C22.6D12 = C8.D6φ: D12/D6C2 ⊆ Aut C22484-C2^2.6D1296,116
C22.7D12 = C2.Dic12central extension (φ=1)96C2^2.7D1296,23
C22.8D12 = C8⋊Dic3central extension (φ=1)96C2^2.8D1296,24
C22.9D12 = C241C4central extension (φ=1)96C2^2.9D1296,25
C22.10D12 = C2.D24central extension (φ=1)48C2^2.10D1296,28
C22.11D12 = C6.C42central extension (φ=1)96C2^2.11D1296,38
C22.12D12 = C2×C24⋊C2central extension (φ=1)48C2^2.12D1296,109
C22.13D12 = C2×D24central extension (φ=1)48C2^2.13D1296,110
C22.14D12 = C2×Dic12central extension (φ=1)96C2^2.14D1296,112
C22.15D12 = C2×C4⋊Dic3central extension (φ=1)96C2^2.15D1296,132
C22.16D12 = C2×D6⋊C4central extension (φ=1)48C2^2.16D1296,134

׿
×
𝔽