Copied to
clipboard

G = C2×C24⋊C2order 96 = 25·3

Direct product of C2 and C24⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C24⋊C2, C88D6, C61SD16, C4.6D12, C249C22, C12.29D4, C12.28C23, Dic63C22, D12.6C22, C22.12D12, (C2×C8)⋊5S3, (C2×C24)⋊7C2, C6.9(C2×D4), C31(C2×SD16), (C2×C4).79D6, (C2×C6).16D4, (C2×Dic6)⋊5C2, (C2×D12).4C2, C2.11(C2×D12), C4.26(C22×S3), (C2×C12).88C22, SmallGroup(96,109)

Series: Derived Chief Lower central Upper central

C1C12 — C2×C24⋊C2
C1C3C6C12D12C2×D12 — C2×C24⋊C2
C3C6C12 — C2×C24⋊C2
C1C22C2×C4C2×C8

Generators and relations for C2×C24⋊C2
 G = < a,b,c | a2=b24=c2=1, ab=ba, ac=ca, cbc=b11 >

Subgroups: 194 in 68 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C24, Dic6, Dic6, D12, D12, C2×Dic3, C2×C12, C22×S3, C2×SD16, C24⋊C2, C2×C24, C2×Dic6, C2×D12, C2×C24⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, D12, C22×S3, C2×SD16, C24⋊C2, C2×D12, C2×C24⋊C2

Character table of C2×C24⋊C2

 class 12A2B2C2D2E34A4B4C4D6A6B6C8A8B8C8D12A12B12C12D24A24B24C24D24E24F24G24H
 size 1111121222212122222222222222222222
ρ1111111111111111111111111111111    trivial
ρ21-1-111-111-11-1-11-11-11-1-1-111-11-1-1111-1    linear of order 2
ρ31111-1-111111111-1-1-1-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ41-1-11-1111-11-1-11-1-11-11-1-1111-111-1-1-11    linear of order 2
ρ5111111111-1-1111-1-1-1-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ61-1-111-111-1-11-11-1-11-11-1-1111-111-1-1-11    linear of order 2
ρ71111-1-1111-1-11111111111111111111    linear of order 2
ρ81-1-11-1111-1-11-11-11-11-1-1-111-11-1-1111-1    linear of order 2
ρ92-2-2200-12-2001-11-22-2211-1-1-11-1-1111-1    orthogonal lifted from D6
ρ102-2-22002-2200-22-2000022-2-200000000    orthogonal lifted from D4
ρ11222200-12200-1-1-12222-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ12222200-12200-1-1-1-2-2-2-2-1-1-1-111111111    orthogonal lifted from D6
ρ132222002-2-2002220000-2-2-2-200000000    orthogonal lifted from D4
ρ142-2-2200-12-2001-112-22-211-1-11-111-1-1-11    orthogonal lifted from D6
ρ15222200-1-2-200-1-1-100001111-3-33-3-3333    orthogonal lifted from D12
ρ162-2-2200-1-22001-110000-1-111-333-33-3-33    orthogonal lifted from D12
ρ172-2-2200-1-22001-110000-1-1113-3-33-333-3    orthogonal lifted from D12
ρ18222200-1-2-200-1-1-10000111133-333-3-3-3    orthogonal lifted from D12
ρ192-22-200200002-2-2-2-2--2--20000--2-2-2-2--2-2--2--2    complex lifted from SD16
ρ202-22-200200002-2-2--2--2-2-20000-2--2--2--2-2--2-2-2    complex lifted from SD16
ρ2122-2-20020000-2-22--2-2-2--20000--2--2-2-2-2--2-2--2    complex lifted from SD16
ρ2222-2-20020000-2-22-2--2--2-20000-2-2--2--2--2-2--2-2    complex lifted from SD16
ρ232-22-200-10000-111--2--2-2-23-3-33ζ87ζ328785ζ32ζ83ζ32838ζ32ζ83ζ3838ζ3ζ83ζ32838ζ32ζ87ζ328785ζ32ζ83ζ3838ζ3ζ87ζ38785ζ3ζ87ζ38785ζ3    complex lifted from C24⋊C2
ρ242-22-200-10000-111--2--2-2-2-333-3ζ87ζ38785ζ3ζ83ζ3838ζ3ζ83ζ32838ζ32ζ83ζ3838ζ3ζ87ζ38785ζ3ζ83ζ32838ζ32ζ87ζ328785ζ32ζ87ζ328785ζ32    complex lifted from C24⋊C2
ρ2522-2-200-1000011-1--2-2-2--23-33-3ζ83ζ3838ζ3ζ83ζ3838ζ3ζ87ζ328785ζ32ζ87ζ38785ζ3ζ87ζ38785ζ3ζ83ζ32838ζ32ζ87ζ328785ζ32ζ83ζ32838ζ32    complex lifted from C24⋊C2
ρ2622-2-200-1000011-1--2-2-2--2-33-33ζ83ζ32838ζ32ζ83ζ32838ζ32ζ87ζ38785ζ3ζ87ζ328785ζ32ζ87ζ328785ζ32ζ83ζ3838ζ3ζ87ζ38785ζ3ζ83ζ3838ζ3    complex lifted from C24⋊C2
ρ272-22-200-10000-111-2-2--2--23-3-33ζ83ζ32838ζ32ζ87ζ328785ζ32ζ87ζ38785ζ3ζ87ζ328785ζ32ζ83ζ32838ζ32ζ87ζ38785ζ3ζ83ζ3838ζ3ζ83ζ3838ζ3    complex lifted from C24⋊C2
ρ2822-2-200-1000011-1-2--2--2-23-33-3ζ87ζ38785ζ3ζ87ζ38785ζ3ζ83ζ32838ζ32ζ83ζ3838ζ3ζ83ζ3838ζ3ζ87ζ328785ζ32ζ83ζ32838ζ32ζ87ζ328785ζ32    complex lifted from C24⋊C2
ρ2922-2-200-1000011-1-2--2--2-2-33-33ζ87ζ328785ζ32ζ87ζ328785ζ32ζ83ζ3838ζ3ζ83ζ32838ζ32ζ83ζ32838ζ32ζ87ζ38785ζ3ζ83ζ3838ζ3ζ87ζ38785ζ3    complex lifted from C24⋊C2
ρ302-22-200-10000-111-2-2--2--2-333-3ζ83ζ3838ζ3ζ87ζ38785ζ3ζ87ζ328785ζ32ζ87ζ38785ζ3ζ83ζ3838ζ3ζ87ζ328785ζ32ζ83ζ32838ζ32ζ83ζ32838ζ32    complex lifted from C24⋊C2

Smallest permutation representation of C2×C24⋊C2
On 48 points
Generators in S48
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 26)(2 37)(3 48)(4 35)(5 46)(6 33)(7 44)(8 31)(9 42)(10 29)(11 40)(12 27)(13 38)(14 25)(15 36)(16 47)(17 34)(18 45)(19 32)(20 43)(21 30)(22 41)(23 28)(24 39)

G:=sub<Sym(48)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26)(2,37)(3,48)(4,35)(5,46)(6,33)(7,44)(8,31)(9,42)(10,29)(11,40)(12,27)(13,38)(14,25)(15,36)(16,47)(17,34)(18,45)(19,32)(20,43)(21,30)(22,41)(23,28)(24,39)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26)(2,37)(3,48)(4,35)(5,46)(6,33)(7,44)(8,31)(9,42)(10,29)(11,40)(12,27)(13,38)(14,25)(15,36)(16,47)(17,34)(18,45)(19,32)(20,43)(21,30)(22,41)(23,28)(24,39) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,26),(2,37),(3,48),(4,35),(5,46),(6,33),(7,44),(8,31),(9,42),(10,29),(11,40),(12,27),(13,38),(14,25),(15,36),(16,47),(17,34),(18,45),(19,32),(20,43),(21,30),(22,41),(23,28),(24,39)]])

C2×C24⋊C2 is a maximal subgroup of
C85D12  C8.8D12  C42.16D6  C8⋊D12  C8.D12  D12.31D4  D12.32D4  D1214D4  Dic614D4  Dic62D4  D65SD16  D43D12  D12.D4  Dic6.11D4  Q83D12  Q8.11D12  Dic3⋊SD16  C12⋊SD16  D12.19D4  C42.36D6  Dic68D4  Dic38SD16  C88D12  C83D12  C24⋊C2⋊C4  C24.42D4  C2430D4  C242D4  Q8.8D12  C2411D4  C24.43D4  C2415D4  C24.37D4  D4.11D12  C2×S3×SD16  D811D6
C2×C24⋊C2 is a maximal quotient of
C249Q8  C12.14Q16  C85D12  C4.5D24  C23.39D12  D12.31D4  C23.43D12  Dic614D4  C12⋊SD16  D123Q8  Dic68D4  Dic64Q8  C2430D4

Matrix representation of C2×C24⋊C2 in GL3(𝔽73) generated by

7200
0720
0072
,
100
06237
03625
,
100
0720
011
G:=sub<GL(3,GF(73))| [72,0,0,0,72,0,0,0,72],[1,0,0,0,62,36,0,37,25],[1,0,0,0,72,1,0,0,1] >;

C2×C24⋊C2 in GAP, Magma, Sage, TeX

C_2\times C_{24}\rtimes C_2
% in TeX

G:=Group("C2xC24:C2");
// GroupNames label

G:=SmallGroup(96,109);
// by ID

G=gap.SmallGroup(96,109);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,50,579,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^2=b^24=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^11>;
// generators/relations

Export

Character table of C2×C24⋊C2 in TeX

׿
×
𝔽