direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C24⋊C2, C8⋊8D6, C6⋊1SD16, C4.6D12, C24⋊9C22, C12.29D4, C12.28C23, Dic6⋊3C22, D12.6C22, C22.12D12, (C2×C8)⋊5S3, (C2×C24)⋊7C2, C6.9(C2×D4), C3⋊1(C2×SD16), (C2×C4).79D6, (C2×C6).16D4, (C2×Dic6)⋊5C2, (C2×D12).4C2, C2.11(C2×D12), C4.26(C22×S3), (C2×C12).88C22, SmallGroup(96,109)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C24⋊C2
G = < a,b,c | a2=b24=c2=1, ab=ba, ac=ca, cbc=b11 >
Subgroups: 194 in 68 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C24, Dic6, Dic6, D12, D12, C2×Dic3, C2×C12, C22×S3, C2×SD16, C24⋊C2, C2×C24, C2×Dic6, C2×D12, C2×C24⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, D12, C22×S3, C2×SD16, C24⋊C2, C2×D12, C2×C24⋊C2
Character table of C2×C24⋊C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 1 | -1 | 1 | -2 | 2 | -2 | 2 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 1 | -1 | 1 | 2 | -2 | 2 | -2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√3 | -√3 | √3 | -√3 | -√3 | √3 | √3 | √3 | orthogonal lifted from D12 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -√3 | √3 | √3 | -√3 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | √3 | -√3 | -√3 | √3 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √3 | √3 | -√3 | √3 | √3 | -√3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√-2 | -√-2 | √-2 | √-2 | √3 | -√3 | -√3 | √3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | complex lifted from C24⋊C2 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√-2 | -√-2 | √-2 | √-2 | -√3 | √3 | √3 | -√3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | complex lifted from C24⋊C2 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-2 | √-2 | √-2 | -√-2 | √3 | -√3 | √3 | -√3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | complex lifted from C24⋊C2 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-2 | √-2 | √-2 | -√-2 | -√3 | √3 | -√3 | √3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | complex lifted from C24⋊C2 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √-2 | √-2 | -√-2 | -√-2 | √3 | -√3 | -√3 | √3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | complex lifted from C24⋊C2 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-2 | -√-2 | -√-2 | √-2 | √3 | -√3 | √3 | -√3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | complex lifted from C24⋊C2 |
ρ29 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-2 | -√-2 | -√-2 | √-2 | -√3 | √3 | -√3 | √3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | complex lifted from C24⋊C2 |
ρ30 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √-2 | √-2 | -√-2 | -√-2 | -√3 | √3 | √3 | -√3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | complex lifted from C24⋊C2 |
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 26)(2 37)(3 48)(4 35)(5 46)(6 33)(7 44)(8 31)(9 42)(10 29)(11 40)(12 27)(13 38)(14 25)(15 36)(16 47)(17 34)(18 45)(19 32)(20 43)(21 30)(22 41)(23 28)(24 39)
G:=sub<Sym(48)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26)(2,37)(3,48)(4,35)(5,46)(6,33)(7,44)(8,31)(9,42)(10,29)(11,40)(12,27)(13,38)(14,25)(15,36)(16,47)(17,34)(18,45)(19,32)(20,43)(21,30)(22,41)(23,28)(24,39)>;
G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26)(2,37)(3,48)(4,35)(5,46)(6,33)(7,44)(8,31)(9,42)(10,29)(11,40)(12,27)(13,38)(14,25)(15,36)(16,47)(17,34)(18,45)(19,32)(20,43)(21,30)(22,41)(23,28)(24,39) );
G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,26),(2,37),(3,48),(4,35),(5,46),(6,33),(7,44),(8,31),(9,42),(10,29),(11,40),(12,27),(13,38),(14,25),(15,36),(16,47),(17,34),(18,45),(19,32),(20,43),(21,30),(22,41),(23,28),(24,39)]])
C2×C24⋊C2 is a maximal subgroup of
C8⋊5D12 C8.8D12 C42.16D6 C8⋊D12 C8.D12 D12.31D4 D12.32D4 D12⋊14D4 Dic6⋊14D4 Dic6⋊2D4 D6⋊5SD16 D4⋊3D12 D12.D4 Dic6.11D4 Q8⋊3D12 Q8.11D12 Dic3⋊SD16 C12⋊SD16 D12.19D4 C42.36D6 Dic6⋊8D4 Dic3⋊8SD16 C8⋊8D12 C8⋊3D12 C24⋊C2⋊C4 C24.42D4 C24⋊30D4 C24⋊2D4 Q8.8D12 C24⋊11D4 C24.43D4 C24⋊15D4 C24.37D4 D4.11D12 C2×S3×SD16 D8⋊11D6
C2×C24⋊C2 is a maximal quotient of
C24⋊9Q8 C12.14Q16 C8⋊5D12 C4.5D24 C23.39D12 D12.31D4 C23.43D12 Dic6⋊14D4 C12⋊SD16 D12⋊3Q8 Dic6⋊8D4 Dic6⋊4Q8 C24⋊30D4
Matrix representation of C2×C24⋊C2 ►in GL3(𝔽73) generated by
72 | 0 | 0 |
0 | 72 | 0 |
0 | 0 | 72 |
1 | 0 | 0 |
0 | 62 | 37 |
0 | 36 | 25 |
1 | 0 | 0 |
0 | 72 | 0 |
0 | 1 | 1 |
G:=sub<GL(3,GF(73))| [72,0,0,0,72,0,0,0,72],[1,0,0,0,62,36,0,37,25],[1,0,0,0,72,1,0,0,1] >;
C2×C24⋊C2 in GAP, Magma, Sage, TeX
C_2\times C_{24}\rtimes C_2
% in TeX
G:=Group("C2xC24:C2");
// GroupNames label
G:=SmallGroup(96,109);
// by ID
G=gap.SmallGroup(96,109);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,50,579,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^2=b^24=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^11>;
// generators/relations
Export