Copied to
clipboard

G = C114order 114 = 2·3·19

Cyclic group

direct product, cyclic, abelian, monomial

Aliases: C114, also denoted Z114, SmallGroup(114,6)

Series: Derived Chief Lower central Upper central

C1 — C114
C1C19C57 — C114
C1 — C114
C1 — C114

Generators and relations for C114
 G = < a | a114=1 >


Smallest permutation representation of C114
Regular action on 114 points
Generators in S114
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)

G:=sub<Sym(114)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)])

C114 is a maximal subgroup of   Dic57

114 conjugacy classes

class 1  2 3A3B6A6B19A···19R38A···38R57A···57AJ114A···114AJ
order12336619···1938···3857···57114···114
size1111111···11···11···11···1

114 irreducible representations

dim11111111
type++
imageC1C2C3C6C19C38C57C114
kernelC114C57C38C19C6C3C2C1
# reps112218183636

Matrix representation of C114 in GL1(𝔽229) generated by

12
G:=sub<GL(1,GF(229))| [12] >;

C114 in GAP, Magma, Sage, TeX

C_{114}
% in TeX

G:=Group("C114");
// GroupNames label

G:=SmallGroup(114,6);
// by ID

G=gap.SmallGroup(114,6);
# by ID

G:=PCGroup([3,-2,-3,-19]);
// Polycyclic

G:=Group<a|a^114=1>;
// generators/relations

Export

Subgroup lattice of C114 in TeX

׿
×
𝔽