Copied to
clipboard

G = C126order 126 = 2·32·7

Cyclic group

direct product, cyclic, abelian, monomial

Aliases: C126, also denoted Z126, SmallGroup(126,6)

Series: Derived Chief Lower central Upper central

C1 — C126
C1C3C21C63 — C126
C1 — C126
C1 — C126

Generators and relations for C126
 G = < a | a126=1 >


Smallest permutation representation of C126
Regular action on 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)]])

C126 is a maximal subgroup of   Dic63

126 conjugacy classes

class 1  2 3A3B6A6B7A···7F9A···9F14A···14F18A···18F21A···21L42A···42L63A···63AJ126A···126AJ
order1233667···79···914···1418···1821···2142···4263···63126···126
size1111111···11···11···11···11···11···11···11···1

126 irreducible representations

dim111111111111
type++
imageC1C2C3C6C7C9C14C18C21C42C63C126
kernelC126C63C42C21C18C14C9C7C6C3C2C1
# reps1122666612123636

Matrix representation of C126 in GL1(𝔽127) generated by

106
G:=sub<GL(1,GF(127))| [106] >;

C126 in GAP, Magma, Sage, TeX

C_{126}
% in TeX

G:=Group("C126");
// GroupNames label

G:=SmallGroup(126,6);
// by ID

G=gap.SmallGroup(126,6);
# by ID

G:=PCGroup([4,-2,-3,-7,-3,173]);
// Polycyclic

G:=Group<a|a^126=1>;
// generators/relations

Export

Subgroup lattice of C126 in TeX

׿
×
𝔽