Extensions 1→N→G→Q→1 with N=C6×D5 and Q=C2

Direct product G=N×Q with N=C6×D5 and Q=C2
dρLabelID
D5×C2×C660D5xC2xC6120,44

Semidirect products G=N:Q with N=C6×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D5)⋊1C2 = C15⋊D4φ: C2/C1C2 ⊆ Out C6×D5604-(C6xD5):1C2120,11
(C6×D5)⋊2C2 = C3⋊D20φ: C2/C1C2 ⊆ Out C6×D5604+(C6xD5):2C2120,12
(C6×D5)⋊3C2 = C2×S3×D5φ: C2/C1C2 ⊆ Out C6×D5304+(C6xD5):3C2120,42
(C6×D5)⋊4C2 = C3×D20φ: C2/C1C2 ⊆ Out C6×D5602(C6xD5):4C2120,18
(C6×D5)⋊5C2 = C3×C5⋊D4φ: C2/C1C2 ⊆ Out C6×D5602(C6xD5):5C2120,20

Non-split extensions G=N.Q with N=C6×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D5).1C2 = D5×Dic3φ: C2/C1C2 ⊆ Out C6×D5604-(C6xD5).1C2120,8
(C6×D5).2C2 = C2×C3⋊F5φ: C2/C1C2 ⊆ Out C6×D5304(C6xD5).2C2120,41
(C6×D5).3C2 = C6×F5φ: C2/C1C2 ⊆ Out C6×D5304(C6xD5).3C2120,40
(C6×D5).4C2 = D5×C12φ: trivial image602(C6xD5).4C2120,17

׿
×
𝔽