direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C3⋊F5, C6⋊F5, C30⋊1C4, D5⋊Dic3, D10.S3, C10⋊Dic3, D5.2D6, C5⋊(C2×Dic3), C3⋊2(C2×F5), C15⋊2(C2×C4), (C3×D5)⋊2C4, (C6×D5).2C2, (C3×D5).2C22, SmallGroup(120,41)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C15 — C3×D5 — C3⋊F5 — C2×C3⋊F5 |
C15 — C2×C3⋊F5 |
Generators and relations for C2×C3⋊F5
G = < a,b,c,d | a2=b3=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >
Character table of C2×C3⋊F5
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5 | 6A | 6B | 6C | 10 | 15A | 15B | 30A | 30B | |
size | 1 | 1 | 5 | 5 | 2 | 15 | 15 | 15 | 15 | 4 | 2 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | -1 | -2 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 1 | -1 | 1 | -2 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | 2 | -1 | -1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ13 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ14 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ15 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 1 | 1-√-15/2 | 1+√-15/2 | -1-√-15/2 | -1+√-15/2 | complex faithful |
ρ16 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | 0 | -1 | 1-√-15/2 | 1+√-15/2 | 1+√-15/2 | 1-√-15/2 | complex lifted from C3⋊F5 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 0 | 0 | -1 | 1+√-15/2 | 1-√-15/2 | 1-√-15/2 | 1+√-15/2 | complex lifted from C3⋊F5 |
ρ18 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 0 | 0 | 1 | 1+√-15/2 | 1-√-15/2 | -1+√-15/2 | -1-√-15/2 | complex faithful |
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(2 3 5 4)(6 13 7 15)(8 12 10 11)(9 14)(16 18 17 20)(21 28 22 30)(23 27 25 26)(24 29)
G:=sub<Sym(30)| (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,18,17,20)(21,28,22,30)(23,27,25,26)(24,29)>;
G:=Group( (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,13,7,15)(8,12,10,11)(9,14)(16,18,17,20)(21,28,22,30)(23,27,25,26)(24,29) );
G=PermutationGroup([[(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(2,3,5,4),(6,13,7,15),(8,12,10,11),(9,14),(16,18,17,20),(21,28,22,30),(23,27,25,26),(24,29)]])
G:=TransitiveGroup(30,17);
C2×C3⋊F5 is a maximal subgroup of
Dic3×F5 D6⋊F5 Dic3⋊F5 C60⋊C4 D10.D6 C2×S3×F5 D10.S4
C2×C3⋊F5 is a maximal quotient of C60.C4 C12.F5 C60⋊C4 C15⋊8M4(2) D10.D6
Matrix representation of C2×C3⋊F5 ►in GL6(𝔽61)
60 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
45 | 56 | 0 | 0 | 0 | 0 |
36 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 60 | 60 | 60 | 60 |
45 | 56 | 0 | 0 | 0 | 0 |
51 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 60 |
G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[45,36,0,0,0,0,56,15,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,0,0,60,0,0,0,1,0,60,0,0,0,0,1,60],[45,51,0,0,0,0,56,16,0,0,0,0,0,0,1,0,0,60,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,1,0,60] >;
C2×C3⋊F5 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes F_5
% in TeX
G:=Group("C2xC3:F5");
// GroupNames label
G:=SmallGroup(120,41);
// by ID
G=gap.SmallGroup(120,41);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,20,323,1804,614]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of C2×C3⋊F5 in TeX
Character table of C2×C3⋊F5 in TeX