metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C15⋊2D4, C3⋊2D20, Dic3⋊D5, D10⋊2S3, D30⋊3C2, C6.5D10, C10.5D6, C30.5C22, (C6×D5)⋊2C2, C5⋊1(C3⋊D4), C2.5(S3×D5), (C5×Dic3)⋊3C2, SmallGroup(120,12)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D20
G = < a,b,c | a3=b20=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C3⋊D20
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 15A | 15B | 20A | 20B | 20C | 20D | 30A | 30B | |
size | 1 | 1 | 10 | 30 | 2 | 6 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 0 | -1 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -2 | 0 | -1 | 0 | 2 | 2 | -1 | 1 | 1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | 0 | 0 | 2 | -2 | -1+√5/2 | -1-√5/2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -2 | -1-√5/2 | -1+√5/2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D20 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D20 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D20 |
ρ15 | 2 | -2 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D20 |
ρ16 | 2 | -2 | 0 | 0 | -1 | 0 | 2 | 2 | 1 | -√-3 | √-3 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | -2 | 0 | 0 | -1 | 0 | 2 | 2 | 1 | √-3 | -√-3 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ18 | 4 | -4 | 0 | 0 | -2 | 0 | -1-√5 | -1+√5 | 2 | 0 | 0 | 1-√5 | 1+√5 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | orthogonal faithful, Schur index 2 |
ρ19 | 4 | 4 | 0 | 0 | -2 | 0 | -1-√5 | -1+√5 | -2 | 0 | 0 | -1+√5 | -1-√5 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ20 | 4 | 4 | 0 | 0 | -2 | 0 | -1+√5 | -1-√5 | -2 | 0 | 0 | -1-√5 | -1+√5 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | orthogonal lifted from S3×D5 |
ρ21 | 4 | -4 | 0 | 0 | -2 | 0 | -1+√5 | -1-√5 | 2 | 0 | 0 | 1+√5 | 1-√5 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | orthogonal faithful, Schur index 2 |
(1 24 57)(2 58 25)(3 26 59)(4 60 27)(5 28 41)(6 42 29)(7 30 43)(8 44 31)(9 32 45)(10 46 33)(11 34 47)(12 48 35)(13 36 49)(14 50 37)(15 38 51)(16 52 39)(17 40 53)(18 54 21)(19 22 55)(20 56 23)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 54)(22 53)(23 52)(24 51)(25 50)(26 49)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)(33 42)(34 41)(35 60)(36 59)(37 58)(38 57)(39 56)(40 55)
G:=sub<Sym(60)| (1,24,57)(2,58,25)(3,26,59)(4,60,27)(5,28,41)(6,42,29)(7,30,43)(8,44,31)(9,32,45)(10,46,33)(11,34,47)(12,48,35)(13,36,49)(14,50,37)(15,38,51)(16,52,39)(17,40,53)(18,54,21)(19,22,55)(20,56,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,54)(22,53)(23,52)(24,51)(25,50)(26,49)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)>;
G:=Group( (1,24,57)(2,58,25)(3,26,59)(4,60,27)(5,28,41)(6,42,29)(7,30,43)(8,44,31)(9,32,45)(10,46,33)(11,34,47)(12,48,35)(13,36,49)(14,50,37)(15,38,51)(16,52,39)(17,40,53)(18,54,21)(19,22,55)(20,56,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,54)(22,53)(23,52)(24,51)(25,50)(26,49)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55) );
G=PermutationGroup([[(1,24,57),(2,58,25),(3,26,59),(4,60,27),(5,28,41),(6,42,29),(7,30,43),(8,44,31),(9,32,45),(10,46,33),(11,34,47),(12,48,35),(13,36,49),(14,50,37),(15,38,51),(16,52,39),(17,40,53),(18,54,21),(19,22,55),(20,56,23)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,54),(22,53),(23,52),(24,51),(25,50),(26,49),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43),(33,42),(34,41),(35,60),(36,59),(37,58),(38,57),(39,56),(40,55)]])
C3⋊D20 is a maximal subgroup of
D20⋊S3 D6.D10 C12.28D10 S3×D20 Dic5.D6 D5×C3⋊D4 D10⋊D6 C9⋊D20 C32⋊7D20 C3⋊D60 C32⋊3D20 D10.2S4 A4⋊D20
C3⋊D20 is a maximal quotient of
C3⋊D40 C6.D20 C15⋊SD16 C3⋊Dic20 D10⋊Dic3 D30⋊4C4 C6.Dic10 C9⋊D20 C32⋊7D20 C3⋊D60 C32⋊3D20 A4⋊D20
Matrix representation of C3⋊D20 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 46 |
0 | 0 | 49 | 59 |
7 | 32 | 0 | 0 |
29 | 2 | 0 | 0 |
0 | 0 | 27 | 35 |
0 | 0 | 14 | 34 |
0 | 60 | 0 | 0 |
60 | 0 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 12 | 1 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,1,49,0,0,46,59],[7,29,0,0,32,2,0,0,0,0,27,14,0,0,35,34],[0,60,0,0,60,0,0,0,0,0,60,12,0,0,0,1] >;
C3⋊D20 in GAP, Magma, Sage, TeX
C_3\rtimes D_{20}
% in TeX
G:=Group("C3:D20");
// GroupNames label
G:=SmallGroup(120,12);
// by ID
G=gap.SmallGroup(120,12);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,61,26,168,2404]);
// Polycyclic
G:=Group<a,b,c|a^3=b^20=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊D20 in TeX
Character table of C3⋊D20 in TeX