Extensions 1→N→G→Q→1 with N=S3×C10 and Q=C2

Direct product G=N×Q with N=S3×C10 and Q=C2
dρLabelID
S3×C2×C1060S3xC2xC10120,45

Semidirect products G=N:Q with N=S3×C10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1C2 = C15⋊D4φ: C2/C1C2 ⊆ Out S3×C10604-(S3xC10):1C2120,11
(S3×C10)⋊2C2 = C5⋊D12φ: C2/C1C2 ⊆ Out S3×C10604+(S3xC10):2C2120,13
(S3×C10)⋊3C2 = C2×S3×D5φ: C2/C1C2 ⊆ Out S3×C10304+(S3xC10):3C2120,42
(S3×C10)⋊4C2 = C5×D12φ: C2/C1C2 ⊆ Out S3×C10602(S3xC10):4C2120,23
(S3×C10)⋊5C2 = C5×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C10602(S3xC10):5C2120,25

Non-split extensions G=N.Q with N=S3×C10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C10).C2 = S3×Dic5φ: C2/C1C2 ⊆ Out S3×C10604-(S3xC10).C2120,9
(S3×C10).2C2 = S3×C20φ: trivial image602(S3xC10).2C2120,22

׿
×
𝔽