metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊2D12, C15⋊3D4, D6⋊2D5, Dic5⋊S3, D30⋊4C2, C10.6D6, C6.6D10, C30.6C22, C3⋊1(C5⋊D4), C2.6(S3×D5), (S3×C10)⋊2C2, (C3×Dic5)⋊3C2, SmallGroup(120,13)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊D12
G = < a,b,c | a5=b12=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C5⋊D12
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 15A | 15B | 30A | 30B | |
size | 1 | 1 | 6 | 30 | 2 | 10 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 10 | 10 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | -1 | -2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | -2 | 0 | 0 | -1 | 0 | 2 | 2 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | -√3 | √3 | -1 | -1 | 1 | 1 | orthogonal lifted from D12 |
ρ9 | 2 | 2 | -2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 2 | -2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | -2 | 0 | 0 | -1 | 0 | 2 | 2 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | √3 | -√3 | -1 | -1 | 1 | 1 | orthogonal lifted from D12 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | ζ54-ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ15 | 2 | -2 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | -ζ53+ζ52 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | -ζ54+ζ5 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | ζ53-ζ52 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ18 | 4 | -4 | 0 | 0 | -2 | 0 | -1-√5 | -1+√5 | 2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal faithful, Schur index 2 |
ρ19 | 4 | 4 | 0 | 0 | -2 | 0 | -1-√5 | -1+√5 | -2 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ20 | 4 | -4 | 0 | 0 | -2 | 0 | -1+√5 | -1-√5 | 2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal faithful, Schur index 2 |
ρ21 | 4 | 4 | 0 | 0 | -2 | 0 | -1+√5 | -1-√5 | -2 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from S3×D5 |
(1 28 50 20 46)(2 47 21 51 29)(3 30 52 22 48)(4 37 23 53 31)(5 32 54 24 38)(6 39 13 55 33)(7 34 56 14 40)(8 41 15 57 35)(9 36 58 16 42)(10 43 17 59 25)(11 26 60 18 44)(12 45 19 49 27)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
(1 9)(2 8)(3 7)(4 6)(10 12)(13 53)(14 52)(15 51)(16 50)(17 49)(18 60)(19 59)(20 58)(21 57)(22 56)(23 55)(24 54)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 48)(35 47)(36 46)
G:=sub<Sym(60)| (1,28,50,20,46)(2,47,21,51,29)(3,30,52,22,48)(4,37,23,53,31)(5,32,54,24,38)(6,39,13,55,33)(7,34,56,14,40)(8,41,15,57,35)(9,36,58,16,42)(10,43,17,59,25)(11,26,60,18,44)(12,45,19,49,27), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,9)(2,8)(3,7)(4,6)(10,12)(13,53)(14,52)(15,51)(16,50)(17,49)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46)>;
G:=Group( (1,28,50,20,46)(2,47,21,51,29)(3,30,52,22,48)(4,37,23,53,31)(5,32,54,24,38)(6,39,13,55,33)(7,34,56,14,40)(8,41,15,57,35)(9,36,58,16,42)(10,43,17,59,25)(11,26,60,18,44)(12,45,19,49,27), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,9)(2,8)(3,7)(4,6)(10,12)(13,53)(14,52)(15,51)(16,50)(17,49)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46) );
G=PermutationGroup([[(1,28,50,20,46),(2,47,21,51,29),(3,30,52,22,48),(4,37,23,53,31),(5,32,54,24,38),(6,39,13,55,33),(7,34,56,14,40),(8,41,15,57,35),(9,36,58,16,42),(10,43,17,59,25),(11,26,60,18,44),(12,45,19,49,27)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)], [(1,9),(2,8),(3,7),(4,6),(10,12),(13,53),(14,52),(15,51),(16,50),(17,49),(18,60),(19,59),(20,58),(21,57),(22,56),(23,55),(24,54),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,48),(35,47),(36,46)]])
C5⋊D12 is a maximal subgroup of
D12⋊D5 D60⋊C2 D6.D10 D5×D12 Dic3.D10 S3×C5⋊D4 D10⋊D6 C5⋊D36 C15⋊D12 D6⋊2D15 D30⋊S3 GL2(𝔽3)⋊D5 Dic5⋊S4
C5⋊D12 is a maximal quotient of
C5⋊D24 D12.D5 Dic6⋊D5 C5⋊Dic12 D6⋊Dic5 D30⋊4C4 C30.Q8 C5⋊D36 C15⋊D12 D6⋊2D15 D30⋊S3 Dic5⋊S4
Matrix representation of C5⋊D12 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 17 | 1 |
0 | 0 | 60 | 0 |
0 | 1 | 0 | 0 |
60 | 1 | 0 | 0 |
0 | 0 | 39 | 39 |
0 | 0 | 47 | 22 |
1 | 60 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 17 | 44 |
0 | 0 | 60 | 44 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,17,60,0,0,1,0],[0,60,0,0,1,1,0,0,0,0,39,47,0,0,39,22],[1,0,0,0,60,60,0,0,0,0,17,60,0,0,44,44] >;
C5⋊D12 in GAP, Magma, Sage, TeX
C_5\rtimes D_{12}
% in TeX
G:=Group("C5:D12");
// GroupNames label
G:=SmallGroup(120,13);
// by ID
G=gap.SmallGroup(120,13);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,20,61,168,2404]);
// Polycyclic
G:=Group<a,b,c|a^5=b^12=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5⋊D12 in TeX
Character table of C5⋊D12 in TeX