Extensions 1→N→G→Q→1 with N=C7⋊C8 and Q=C2

Direct product G=N×Q with N=C7⋊C8 and Q=C2
dρLabelID
C2×C7⋊C8112C2xC7:C8112,8

Semidirect products G=N:Q with N=C7⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C7⋊C81C2 = D4⋊D7φ: C2/C1C2 ⊆ Out C7⋊C8564+C7:C8:1C2112,14
C7⋊C82C2 = D4.D7φ: C2/C1C2 ⊆ Out C7⋊C8564-C7:C8:2C2112,15
C7⋊C83C2 = Q8⋊D7φ: C2/C1C2 ⊆ Out C7⋊C8564+C7:C8:3C2112,16
C7⋊C84C2 = C8⋊D7φ: C2/C1C2 ⊆ Out C7⋊C8562C7:C8:4C2112,4
C7⋊C85C2 = C4.Dic7φ: C2/C1C2 ⊆ Out C7⋊C8562C7:C8:5C2112,9
C7⋊C86C2 = C8×D7φ: trivial image562C7:C8:6C2112,3

Non-split extensions G=N.Q with N=C7⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C7⋊C8.C2 = C7⋊Q16φ: C2/C1C2 ⊆ Out C7⋊C81124-C7:C8.C2112,17

׿
×
𝔽