Copied to
clipboard

G = C2×C7⋊C8order 112 = 24·7

Direct product of C2 and C7⋊C8

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C7⋊C8, C14⋊C8, C28.3C4, C4.14D14, C4.3Dic7, C28.14C22, C22.2Dic7, C4(C7⋊C8), C72(C2×C8), (C2×C4).5D7, C14.6(C2×C4), (C2×C14).2C4, (C2×C28).6C2, C2.1(C2×Dic7), SmallGroup(112,8)

Series: Derived Chief Lower central Upper central

C1C7 — C2×C7⋊C8
C1C7C14C28C7⋊C8 — C2×C7⋊C8
C7 — C2×C7⋊C8
C1C2×C4

Generators and relations for C2×C7⋊C8
 G = < a,b,c | a2=b7=c8=1, ab=ba, ac=ca, cbc-1=b-1 >

7C8
7C8
7C2×C8

Smallest permutation representation of C2×C7⋊C8
Regular action on 112 points
Generators in S112
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 61)(18 62)(19 63)(20 64)(21 57)(22 58)(23 59)(24 60)(33 96)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 104)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(65 85)(66 86)(67 87)(68 88)(69 81)(70 82)(71 83)(72 84)(73 108)(74 109)(75 110)(76 111)(77 112)(78 105)(79 106)(80 107)
(1 47 36 86 19 10 105)(2 106 11 20 87 37 48)(3 41 38 88 21 12 107)(4 108 13 22 81 39 42)(5 43 40 82 23 14 109)(6 110 15 24 83 33 44)(7 45 34 84 17 16 111)(8 112 9 18 85 35 46)(25 102 91 66 63 54 78)(26 79 55 64 67 92 103)(27 104 93 68 57 56 80)(28 73 49 58 69 94 97)(29 98 95 70 59 50 74)(30 75 51 60 71 96 99)(31 100 89 72 61 52 76)(32 77 53 62 65 90 101)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(33,96)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,104)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(65,85)(66,86)(67,87)(68,88)(69,81)(70,82)(71,83)(72,84)(73,108)(74,109)(75,110)(76,111)(77,112)(78,105)(79,106)(80,107), (1,47,36,86,19,10,105)(2,106,11,20,87,37,48)(3,41,38,88,21,12,107)(4,108,13,22,81,39,42)(5,43,40,82,23,14,109)(6,110,15,24,83,33,44)(7,45,34,84,17,16,111)(8,112,9,18,85,35,46)(25,102,91,66,63,54,78)(26,79,55,64,67,92,103)(27,104,93,68,57,56,80)(28,73,49,58,69,94,97)(29,98,95,70,59,50,74)(30,75,51,60,71,96,99)(31,100,89,72,61,52,76)(32,77,53,62,65,90,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)(33,96)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,104)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(65,85)(66,86)(67,87)(68,88)(69,81)(70,82)(71,83)(72,84)(73,108)(74,109)(75,110)(76,111)(77,112)(78,105)(79,106)(80,107), (1,47,36,86,19,10,105)(2,106,11,20,87,37,48)(3,41,38,88,21,12,107)(4,108,13,22,81,39,42)(5,43,40,82,23,14,109)(6,110,15,24,83,33,44)(7,45,34,84,17,16,111)(8,112,9,18,85,35,46)(25,102,91,66,63,54,78)(26,79,55,64,67,92,103)(27,104,93,68,57,56,80)(28,73,49,58,69,94,97)(29,98,95,70,59,50,74)(30,75,51,60,71,96,99)(31,100,89,72,61,52,76)(32,77,53,62,65,90,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,61),(18,62),(19,63),(20,64),(21,57),(22,58),(23,59),(24,60),(33,96),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,104),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(65,85),(66,86),(67,87),(68,88),(69,81),(70,82),(71,83),(72,84),(73,108),(74,109),(75,110),(76,111),(77,112),(78,105),(79,106),(80,107)], [(1,47,36,86,19,10,105),(2,106,11,20,87,37,48),(3,41,38,88,21,12,107),(4,108,13,22,81,39,42),(5,43,40,82,23,14,109),(6,110,15,24,83,33,44),(7,45,34,84,17,16,111),(8,112,9,18,85,35,46),(25,102,91,66,63,54,78),(26,79,55,64,67,92,103),(27,104,93,68,57,56,80),(28,73,49,58,69,94,97),(29,98,95,70,59,50,74),(30,75,51,60,71,96,99),(31,100,89,72,61,52,76),(32,77,53,62,65,90,101)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)]])

C2×C7⋊C8 is a maximal subgroup of
C42.D7  C28⋊C8  C28.Q8  C4.Dic14  C14.D8  C14.Q16  C8×Dic7  Dic7⋊C8  C56⋊C4  D14⋊C8  C28.53D4  C28.55D4  D4⋊Dic7  Q8⋊Dic7  D7×C2×C8  D28.C4  Q8.Dic7  D4.8D14
C2×C7⋊C8 is a maximal quotient of
C28⋊C8  C28.C8  C28.55D4

40 conjugacy classes

class 1 2A2B2C4A4B4C4D7A7B7C8A···8H14A···14I28A···28L
order122244447778···814···1428···28
size111111112227···72···22···2

40 irreducible representations

dim11111122222
type++++-+-
imageC1C2C2C4C4C8D7Dic7D14Dic7C7⋊C8
kernelC2×C7⋊C8C7⋊C8C2×C28C28C2×C14C14C2×C4C4C4C22C2
# reps121228333312

Matrix representation of C2×C7⋊C8 in GL3(𝔽113) generated by

11200
010
001
,
100
010112
011112
,
11200
0487
04065
G:=sub<GL(3,GF(113))| [112,0,0,0,1,0,0,0,1],[1,0,0,0,10,11,0,112,112],[112,0,0,0,48,40,0,7,65] >;

C2×C7⋊C8 in GAP, Magma, Sage, TeX

C_2\times C_7\rtimes C_8
% in TeX

G:=Group("C2xC7:C8");
// GroupNames label

G:=SmallGroup(112,8);
// by ID

G=gap.SmallGroup(112,8);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,20,42,2404]);
// Polycyclic

G:=Group<a,b,c|a^2=b^7=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C2×C7⋊C8 in TeX

׿
×
𝔽