metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.D7, C7⋊2SD16, C4.2D14, C14.8D4, Dic14⋊2C2, C28.2C22, C7⋊C8⋊2C2, (C7×D4).1C2, C2.5(C7⋊D4), SmallGroup(112,15)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.D7
G = < a,b,c,d | a4=b2=c7=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Character table of D4.D7
class | 1 | 2A | 2B | 4A | 4B | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | 28A | 28B | 28C | |
size | 1 | 1 | 4 | 2 | 28 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | -2 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ75-ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ7 | 2 | 2 | -2 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ76-ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ8 | 2 | 2 | 2 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ9 | 2 | 2 | -2 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ74-ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ10 | 2 | 2 | 2 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ11 | 2 | 2 | 2 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ12 | 2 | 2 | 0 | -2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74-ζ73 | ζ76-ζ7 | -ζ76+ζ7 | -ζ74+ζ73 | ζ75-ζ72 | -ζ75+ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | complex lifted from C7⋊D4 |
ρ13 | 2 | 2 | 0 | -2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74+ζ73 | -ζ76+ζ7 | ζ76-ζ7 | ζ74-ζ73 | -ζ75+ζ72 | ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | complex lifted from C7⋊D4 |
ρ14 | 2 | 2 | 0 | -2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75-ζ72 | ζ74-ζ73 | -ζ74+ζ73 | -ζ75+ζ72 | -ζ76+ζ7 | ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | complex lifted from C7⋊D4 |
ρ15 | 2 | 2 | 0 | -2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76-ζ7 | -ζ75+ζ72 | ζ75-ζ72 | -ζ76+ζ7 | ζ74-ζ73 | -ζ74+ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | complex lifted from C7⋊D4 |
ρ16 | 2 | 2 | 0 | -2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75+ζ72 | -ζ74+ζ73 | ζ74-ζ73 | ζ75-ζ72 | ζ76-ζ7 | -ζ76+ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | complex lifted from C7⋊D4 |
ρ17 | 2 | 2 | 0 | -2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76+ζ7 | ζ75-ζ72 | -ζ75+ζ72 | ζ76-ζ7 | -ζ74+ζ73 | ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | complex lifted from C7⋊D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | √-2 | -√-2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ19 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -√-2 | √-2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 27 13 20)(2 28 14 21)(3 22 8 15)(4 23 9 16)(5 24 10 17)(6 25 11 18)(7 26 12 19)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 42 13 35)(2 41 14 34)(3 40 8 33)(4 39 9 32)(5 38 10 31)(6 37 11 30)(7 36 12 29)(15 54 22 47)(16 53 23 46)(17 52 24 45)(18 51 25 44)(19 50 26 43)(20 56 27 49)(21 55 28 48)
G:=sub<Sym(56)| (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,42,13,35)(2,41,14,34)(3,40,8,33)(4,39,9,32)(5,38,10,31)(6,37,11,30)(7,36,12,29)(15,54,22,47)(16,53,23,46)(17,52,24,45)(18,51,25,44)(19,50,26,43)(20,56,27,49)(21,55,28,48)>;
G:=Group( (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,42,13,35)(2,41,14,34)(3,40,8,33)(4,39,9,32)(5,38,10,31)(6,37,11,30)(7,36,12,29)(15,54,22,47)(16,53,23,46)(17,52,24,45)(18,51,25,44)(19,50,26,43)(20,56,27,49)(21,55,28,48) );
G=PermutationGroup([[(1,27,13,20),(2,28,14,21),(3,22,8,15),(4,23,9,16),(5,24,10,17),(6,25,11,18),(7,26,12,19),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,42,13,35),(2,41,14,34),(3,40,8,33),(4,39,9,32),(5,38,10,31),(6,37,11,30),(7,36,12,29),(15,54,22,47),(16,53,23,46),(17,52,24,45),(18,51,25,44),(19,50,26,43),(20,56,27,49),(21,55,28,48)]])
D4.D7 is a maximal subgroup of
D8⋊D7 D8⋊3D7 D7×SD16 SD16⋊D7 D4.D14 D4.8D14 D4.9D14 D4.F7 C42.D4 D12.D7 D4.D21
D4.D7 is a maximal quotient of
C4.Dic14 C14.Q16 D4⋊Dic7 C42.D4 D12.D7 D4.D21
Matrix representation of D4.D7 ►in GL4(𝔽113) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 112 | 84 |
0 | 0 | 78 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 112 | 84 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
112 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
88 | 90 | 0 | 0 |
91 | 25 | 0 | 0 |
0 | 0 | 87 | 75 |
0 | 0 | 110 | 26 |
G:=sub<GL(4,GF(113))| [1,0,0,0,0,1,0,0,0,0,112,78,0,0,84,1],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,84,1],[0,112,0,0,1,9,0,0,0,0,1,0,0,0,0,1],[88,91,0,0,90,25,0,0,0,0,87,110,0,0,75,26] >;
D4.D7 in GAP, Magma, Sage, TeX
D_4.D_7
% in TeX
G:=Group("D4.D7");
// GroupNames label
G:=SmallGroup(112,15);
// by ID
G=gap.SmallGroup(112,15);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-7,40,61,182,97,42,2404]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^7=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D4.D7 in TeX
Character table of D4.D7 in TeX