Extensions 1→N→G→Q→1 with N=C3×Dic5 and Q=C2

Direct product G=N×Q with N=C3×Dic5 and Q=C2
dρLabelID
C6×Dic5120C6xDic5120,19

Semidirect products G=N:Q with N=C3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic5)⋊1C2 = S3×Dic5φ: C2/C1C2 ⊆ Out C3×Dic5604-(C3xDic5):1C2120,9
(C3×Dic5)⋊2C2 = D30.C2φ: C2/C1C2 ⊆ Out C3×Dic5604+(C3xDic5):2C2120,10
(C3×Dic5)⋊3C2 = C5⋊D12φ: C2/C1C2 ⊆ Out C3×Dic5604+(C3xDic5):3C2120,13
(C3×Dic5)⋊4C2 = C3×C5⋊D4φ: C2/C1C2 ⊆ Out C3×Dic5602(C3xDic5):4C2120,20
(C3×Dic5)⋊5C2 = D5×C12φ: trivial image602(C3xDic5):5C2120,17

Non-split extensions G=N.Q with N=C3×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic5).1C2 = C15⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic51204-(C3xDic5).1C2120,14
(C3×Dic5).2C2 = C3×Dic10φ: C2/C1C2 ⊆ Out C3×Dic51202(C3xDic5).2C2120,16
(C3×Dic5).3C2 = C15⋊C8φ: C2/C1C2 ⊆ Out C3×Dic51204(C3xDic5).3C2120,7
(C3×Dic5).4C2 = C3×C5⋊C8φ: C2/C1C2 ⊆ Out C3×Dic51204(C3xDic5).4C2120,6

׿
×
𝔽