Copied to
clipboard

G = C15⋊C8order 120 = 23·3·5

1st semidirect product of C15 and C8 acting via C8/C2=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C151C8, C6.F5, C30.1C4, C10.Dic3, Dic5.2S3, C5⋊(C3⋊C8), C3⋊(C5⋊C8), C2.(C3⋊F5), (C3×Dic5).3C2, SmallGroup(120,7)

Series: Derived Chief Lower central Upper central

C1C15 — C15⋊C8
C1C5C15C30C3×Dic5 — C15⋊C8
C15 — C15⋊C8
C1C2

Generators and relations for C15⋊C8
 G = < a,b | a15=b8=1, bab-1=a2 >

5C4
15C8
5C12
5C3⋊C8
3C5⋊C8

Character table of C15⋊C8

 class 1234A4B568A8B8C8D1012A12B15A15B30A30B
 size 112554215151515410104444
ρ1111111111111111111    trivial
ρ21111111-1-1-1-11111111    linear of order 2
ρ3111-1-111i-ii-i1-1-11111    linear of order 4
ρ4111-1-111-ii-ii1-1-11111    linear of order 4
ρ51-11i-i1-1ζ87ζ85ζ83ζ8-1i-i11-1-1    linear of order 8
ρ61-11i-i1-1ζ83ζ8ζ87ζ85-1i-i11-1-1    linear of order 8
ρ71-11-ii1-1ζ8ζ83ζ85ζ87-1-ii11-1-1    linear of order 8
ρ81-11-ii1-1ζ85ζ87ζ8ζ83-1-ii11-1-1    linear of order 8
ρ922-1222-100002-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-1-2-22-10000211-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ112-2-12i-2i210000-2-ii-1-111    complex lifted from C3⋊C8
ρ122-2-1-2i2i210000-2i-i-1-111    complex lifted from C3⋊C8
ρ1344400-140000-100-1-1-1-1    orthogonal lifted from F5
ρ144-4400-1-40000100-1-111    symplectic lifted from C5⋊C8, Schur index 2
ρ154-4-200-1200001001+-15/21--15/2-1+-15/2-1--15/2    complex faithful
ρ1644-200-1-20000-1001+-15/21--15/21--15/21+-15/2    complex lifted from C3⋊F5
ρ1744-200-1-20000-1001--15/21+-15/21+-15/21--15/2    complex lifted from C3⋊F5
ρ184-4-200-1200001001--15/21+-15/2-1--15/2-1+-15/2    complex faithful

Smallest permutation representation of C15⋊C8
Regular action on 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 111 55 78 24 91 42 66)(2 119 59 80 25 99 31 68)(3 112 48 82 26 92 35 70)(4 120 52 84 27 100 39 72)(5 113 56 86 28 93 43 74)(6 106 60 88 29 101 32 61)(7 114 49 90 30 94 36 63)(8 107 53 77 16 102 40 65)(9 115 57 79 17 95 44 67)(10 108 46 81 18 103 33 69)(11 116 50 83 19 96 37 71)(12 109 54 85 20 104 41 73)(13 117 58 87 21 97 45 75)(14 110 47 89 22 105 34 62)(15 118 51 76 23 98 38 64)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,111,55,78,24,91,42,66)(2,119,59,80,25,99,31,68)(3,112,48,82,26,92,35,70)(4,120,52,84,27,100,39,72)(5,113,56,86,28,93,43,74)(6,106,60,88,29,101,32,61)(7,114,49,90,30,94,36,63)(8,107,53,77,16,102,40,65)(9,115,57,79,17,95,44,67)(10,108,46,81,18,103,33,69)(11,116,50,83,19,96,37,71)(12,109,54,85,20,104,41,73)(13,117,58,87,21,97,45,75)(14,110,47,89,22,105,34,62)(15,118,51,76,23,98,38,64)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,111,55,78,24,91,42,66)(2,119,59,80,25,99,31,68)(3,112,48,82,26,92,35,70)(4,120,52,84,27,100,39,72)(5,113,56,86,28,93,43,74)(6,106,60,88,29,101,32,61)(7,114,49,90,30,94,36,63)(8,107,53,77,16,102,40,65)(9,115,57,79,17,95,44,67)(10,108,46,81,18,103,33,69)(11,116,50,83,19,96,37,71)(12,109,54,85,20,104,41,73)(13,117,58,87,21,97,45,75)(14,110,47,89,22,105,34,62)(15,118,51,76,23,98,38,64) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,111,55,78,24,91,42,66),(2,119,59,80,25,99,31,68),(3,112,48,82,26,92,35,70),(4,120,52,84,27,100,39,72),(5,113,56,86,28,93,43,74),(6,106,60,88,29,101,32,61),(7,114,49,90,30,94,36,63),(8,107,53,77,16,102,40,65),(9,115,57,79,17,95,44,67),(10,108,46,81,18,103,33,69),(11,116,50,83,19,96,37,71),(12,109,54,85,20,104,41,73),(13,117,58,87,21,97,45,75),(14,110,47,89,22,105,34,62),(15,118,51,76,23,98,38,64)]])

C15⋊C8 is a maximal subgroup of
S3×C5⋊C8  D15⋊C8  D6.F5  Dic3.F5  C60.C4  C12.F5  C158M4(2)  C45⋊C8  C30.Dic3  C5⋊U2(𝔽3)  Dic5.S4
C15⋊C8 is a maximal quotient of
C15⋊C16  C45⋊C8  C30.Dic3  Dic5.S4

Matrix representation of C15⋊C8 in GL6(𝔽241)

24010000
24000000
0022912711412
002291150126
00011522912
001141272290
,
1691240000
52720000
0021167132143
00113237102210
001801284139
00109987130

G:=sub<GL(6,GF(241))| [240,240,0,0,0,0,1,0,0,0,0,0,0,0,229,229,0,114,0,0,127,115,115,127,0,0,114,0,229,229,0,0,12,126,12,0],[169,52,0,0,0,0,124,72,0,0,0,0,0,0,211,113,180,109,0,0,67,237,128,98,0,0,132,102,4,71,0,0,143,210,139,30] >;

C15⋊C8 in GAP, Magma, Sage, TeX

C_{15}\rtimes C_8
% in TeX

G:=Group("C15:C8");
// GroupNames label

G:=SmallGroup(120,7);
// by ID

G=gap.SmallGroup(120,7);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-5,10,26,323,1804,1209]);
// Polycyclic

G:=Group<a,b|a^15=b^8=1,b*a*b^-1=a^2>;
// generators/relations

Export

Subgroup lattice of C15⋊C8 in TeX
Character table of C15⋊C8 in TeX

׿
×
𝔽