Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D7

Direct product G=N×Q with N=C2×C4 and Q=D7
dρLabelID
C2×C4×D756C2xC4xD7112,28

Semidirect products G=N:Q with N=C2×C4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D7 = D14⋊C4φ: D7/C7C2 ⊆ Aut C2×C456(C2xC4):1D7112,13
(C2×C4)⋊2D7 = C2×D28φ: D7/C7C2 ⊆ Aut C2×C456(C2xC4):2D7112,29
(C2×C4)⋊3D7 = C4○D28φ: D7/C7C2 ⊆ Aut C2×C4562(C2xC4):3D7112,30

Non-split extensions G=N.Q with N=C2×C4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D7 = Dic7⋊C4φ: D7/C7C2 ⊆ Aut C2×C4112(C2xC4).1D7112,11
(C2×C4).2D7 = C4.Dic7φ: D7/C7C2 ⊆ Aut C2×C4562(C2xC4).2D7112,9
(C2×C4).3D7 = C4⋊Dic7φ: D7/C7C2 ⊆ Aut C2×C4112(C2xC4).3D7112,12
(C2×C4).4D7 = C2×Dic14φ: D7/C7C2 ⊆ Aut C2×C4112(C2xC4).4D7112,27
(C2×C4).5D7 = C2×C7⋊C8central extension (φ=1)112(C2xC4).5D7112,8
(C2×C4).6D7 = C4×Dic7central extension (φ=1)112(C2xC4).6D7112,10

׿
×
𝔽