d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C18 | 36 | 2 | S3xC18 | 108,24 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C18⋊S3 = C2×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C18 | 54 | C18:S3 | 108,27 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C18.1S3 = Dic27 | φ: S3/C3 → C2 ⊆ Aut C18 | 108 | 2- | C18.1S3 | 108,1 |
C18.2S3 = D54 | φ: S3/C3 → C2 ⊆ Aut C18 | 54 | 2+ | C18.2S3 | 108,4 |
C18.3S3 = C9⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C18 | 108 | C18.3S3 | 108,10 | |
C18.4S3 = C9×Dic3 | central extension (φ=1) | 36 | 2 | C18.4S3 | 108,7 |