direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C9⋊S3, C6⋊D9, C18⋊S3, C9⋊2D6, C3⋊2D18, C32.4D6, (C3×C18)⋊3C2, (C3×C6).8S3, (C3×C9)⋊4C22, C6.2(C3⋊S3), C3.(C2×C3⋊S3), SmallGroup(108,27)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C9 — C9⋊S3 — C2×C9⋊S3 |
C3×C9 — C2×C9⋊S3 |
Generators and relations for C2×C9⋊S3
G = < a,b,c,d | a2=b9=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Character table of C2×C9⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 18A | 18B | 18C | 18D | 18E | 18F | 18G | 18H | 18I | |
size | 1 | 1 | 27 | 27 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 1 | 1 | 1 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ14 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | 1 | -2 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ17 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ18 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 1 | 1 | 1 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ19 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ20 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | -2 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ21 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 1 | 1 | 1 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ22 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ23 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ24 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | 1 | -2 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ25 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | -2 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ26 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | -2 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ27 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ28 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ29 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ30 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | 1 | -2 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 10)(9 11)(19 44)(20 45)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 54)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 53)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 35 37)(2 36 38)(3 28 39)(4 29 40)(5 30 41)(6 31 42)(7 32 43)(8 33 44)(9 34 45)(10 50 19)(11 51 20)(12 52 21)(13 53 22)(14 54 23)(15 46 24)(16 47 25)(17 48 26)(18 49 27)
(2 9)(3 8)(4 7)(5 6)(10 14)(11 13)(15 18)(16 17)(19 54)(20 53)(21 52)(22 51)(23 50)(24 49)(25 48)(26 47)(27 46)(28 44)(29 43)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(36 45)
G:=sub<Sym(54)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,44)(20,45)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,54)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,35,37)(2,36,38)(3,28,39)(4,29,40)(5,30,41)(6,31,42)(7,32,43)(8,33,44)(9,34,45)(10,50,19)(11,51,20)(12,52,21)(13,53,22)(14,54,23)(15,46,24)(16,47,25)(17,48,26)(18,49,27), (2,9)(3,8)(4,7)(5,6)(10,14)(11,13)(15,18)(16,17)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(36,45)>;
G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,10)(9,11)(19,44)(20,45)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,54)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,35,37)(2,36,38)(3,28,39)(4,29,40)(5,30,41)(6,31,42)(7,32,43)(8,33,44)(9,34,45)(10,50,19)(11,51,20)(12,52,21)(13,53,22)(14,54,23)(15,46,24)(16,47,25)(17,48,26)(18,49,27), (2,9)(3,8)(4,7)(5,6)(10,14)(11,13)(15,18)(16,17)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,44)(29,43)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(36,45) );
G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,10),(9,11),(19,44),(20,45),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,54),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,53)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,35,37),(2,36,38),(3,28,39),(4,29,40),(5,30,41),(6,31,42),(7,32,43),(8,33,44),(9,34,45),(10,50,19),(11,51,20),(12,52,21),(13,53,22),(14,54,23),(15,46,24),(16,47,25),(17,48,26),(18,49,27)], [(2,9),(3,8),(4,7),(5,6),(10,14),(11,13),(15,18),(16,17),(19,54),(20,53),(21,52),(22,51),(23,50),(24,49),(25,48),(26,47),(27,46),(28,44),(29,43),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(36,45)]])
C2×C9⋊S3 is a maximal subgroup of
C18.D6 C3⋊D36 C9⋊D12 C36⋊S3 C6.D18 C2×S3×D9 C18.6S4 C32.3GL2(𝔽3)
C2×C9⋊S3 is a maximal quotient of
C12.D9 C36⋊S3 C6.D18
Matrix representation of C2×C9⋊S3 ►in GL4(𝔽19) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
5 | 7 | 0 | 0 |
12 | 17 | 0 | 0 |
0 | 0 | 12 | 17 |
0 | 0 | 2 | 14 |
0 | 1 | 0 | 0 |
18 | 18 | 0 | 0 |
0 | 0 | 18 | 18 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
18 | 18 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 1 | 1 |
G:=sub<GL(4,GF(19))| [1,0,0,0,0,1,0,0,0,0,18,0,0,0,0,18],[5,12,0,0,7,17,0,0,0,0,12,2,0,0,17,14],[0,18,0,0,1,18,0,0,0,0,18,1,0,0,18,0],[1,18,0,0,0,18,0,0,0,0,18,1,0,0,0,1] >;
C2×C9⋊S3 in GAP, Magma, Sage, TeX
C_2\times C_9\rtimes S_3
% in TeX
G:=Group("C2xC9:S3");
// GroupNames label
G:=SmallGroup(108,27);
// by ID
G=gap.SmallGroup(108,27);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,662,282,483,1804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^9=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C2×C9⋊S3 in TeX
Character table of C2×C9⋊S3 in TeX