Extensions 1→N→G→Q→1 with N=C22 and Q=D14

Direct product G=N×Q with N=C22 and Q=D14

Semidirect products G=N:Q with N=C22 and Q=D14
extensionφ:Q→Aut NdρLabelID
C221D14 = D4×D7φ: D14/D7C2 ⊆ Aut C22284+C2^2:1D14112,31
C222D14 = C2×C7⋊D4φ: D14/C14C2 ⊆ Aut C2256C2^2:2D14112,36

Non-split extensions G=N.Q with N=C22 and Q=D14
extensionφ:Q→Aut NdρLabelID
C22.1D14 = D42D7φ: D14/D7C2 ⊆ Aut C22564-C2^2.1D14112,32
C22.2D14 = C4○D28φ: D14/C14C2 ⊆ Aut C22562C2^2.2D14112,30
C22.3D14 = C4×Dic7central extension (φ=1)112C2^2.3D14112,10
C22.4D14 = Dic7⋊C4central extension (φ=1)112C2^2.4D14112,11
C22.5D14 = C4⋊Dic7central extension (φ=1)112C2^2.5D14112,12
C22.6D14 = D14⋊C4central extension (φ=1)56C2^2.6D14112,13
C22.7D14 = C23.D7central extension (φ=1)56C2^2.7D14112,18
C22.8D14 = C2×Dic14central extension (φ=1)112C2^2.8D14112,27
C22.9D14 = C2×C4×D7central extension (φ=1)56C2^2.9D14112,28
C22.10D14 = C2×D28central extension (φ=1)56C2^2.10D14112,29
C22.11D14 = C22×Dic7central extension (φ=1)112C2^2.11D14112,35