Copied to
clipboard

G = D133order 266 = 2·7·19

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D133, C19⋊D7, C7⋊D19, C1331C2, sometimes denoted D266 or Dih133 or Dih266, SmallGroup(266,3)

Series: Derived Chief Lower central Upper central

C1C133 — D133
C1C19C133 — D133
C133 — D133
C1

Generators and relations for D133
 G = < a,b | a133=b2=1, bab=a-1 >

133C2
19D7
7D19

Smallest permutation representation of D133
On 133 points
Generators in S133
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)
(1 133)(2 132)(3 131)(4 130)(5 129)(6 128)(7 127)(8 126)(9 125)(10 124)(11 123)(12 122)(13 121)(14 120)(15 119)(16 118)(17 117)(18 116)(19 115)(20 114)(21 113)(22 112)(23 111)(24 110)(25 109)(26 108)(27 107)(28 106)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 98)(37 97)(38 96)(39 95)(40 94)(41 93)(42 92)(43 91)(44 90)(45 89)(46 88)(47 87)(48 86)(49 85)(50 84)(51 83)(52 82)(53 81)(54 80)(55 79)(56 78)(57 77)(58 76)(59 75)(60 74)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)

G:=sub<Sym(133)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133), (1,133)(2,132)(3,131)(4,130)(5,129)(6,128)(7,127)(8,126)(9,125)(10,124)(11,123)(12,122)(13,121)(14,120)(15,119)(16,118)(17,117)(18,116)(19,115)(20,114)(21,113)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,84)(51,83)(52,82)(53,81)(54,80)(55,79)(56,78)(57,77)(58,76)(59,75)(60,74)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133), (1,133)(2,132)(3,131)(4,130)(5,129)(6,128)(7,127)(8,126)(9,125)(10,124)(11,123)(12,122)(13,121)(14,120)(15,119)(16,118)(17,117)(18,116)(19,115)(20,114)(21,113)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,90)(45,89)(46,88)(47,87)(48,86)(49,85)(50,84)(51,83)(52,82)(53,81)(54,80)(55,79)(56,78)(57,77)(58,76)(59,75)(60,74)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)], [(1,133),(2,132),(3,131),(4,130),(5,129),(6,128),(7,127),(8,126),(9,125),(10,124),(11,123),(12,122),(13,121),(14,120),(15,119),(16,118),(17,117),(18,116),(19,115),(20,114),(21,113),(22,112),(23,111),(24,110),(25,109),(26,108),(27,107),(28,106),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,98),(37,97),(38,96),(39,95),(40,94),(41,93),(42,92),(43,91),(44,90),(45,89),(46,88),(47,87),(48,86),(49,85),(50,84),(51,83),(52,82),(53,81),(54,80),(55,79),(56,78),(57,77),(58,76),(59,75),(60,74),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68)]])

68 conjugacy classes

class 1  2 7A7B7C19A···19I133A···133BB
order1277719···19133···133
size11332222···22···2

68 irreducible representations

dim11222
type+++++
imageC1C2D7D19D133
kernelD133C133C19C7C1
# reps113954

Matrix representation of D133 in GL2(𝔽1597) generated by

13031004
5931522
,
13031004
714294
G:=sub<GL(2,GF(1597))| [1303,593,1004,1522],[1303,714,1004,294] >;

D133 in GAP, Magma, Sage, TeX

D_{133}
% in TeX

G:=Group("D133");
// GroupNames label

G:=SmallGroup(266,3);
// by ID

G=gap.SmallGroup(266,3);
# by ID

G:=PCGroup([3,-2,-7,-19,73,2270]);
// Polycyclic

G:=Group<a,b|a^133=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D133 in TeX

׿
×
𝔽