p-group, metacyclic, nilpotent (class 3), monomial
Aliases: C8⋊1C16, C8.36D8, C82.2C2, C8.19Q16, C4.5M5(2), (C2×C8).8C8, C4⋊C16.8C2, C4.7(C2×C16), (C4×C8).24C4, C2.4(C4⋊C16), (C2×C8).35Q8, (C2×C8).397D4, C2.2(C8⋊1C8), C4.20(C2.D8), C2.2(C8.C8), C22.17(C4⋊C8), C42.306(C2×C4), (C4×C8).357C22, (C2×C4).57M4(2), C4.13(C8.C4), (C2×C4).72(C2×C8), (C2×C4).157(C4⋊C4), SmallGroup(128,102)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.36D8
G = < a,b,c | a8=b8=1, c2=a, ab=ba, ac=ca, cbc-1=b-1 >
(1 3 5 7 9 11 13 15)(2 4 6 8 10 12 14 16)(17 19 21 23 25 27 29 31)(18 20 22 24 26 28 30 32)(33 35 37 39 41 43 45 47)(34 36 38 40 42 44 46 48)(49 51 53 55 57 59 61 63)(50 52 54 56 58 60 62 64)(65 67 69 71 73 75 77 79)(66 68 70 72 74 76 78 80)(81 83 85 87 89 91 93 95)(82 84 86 88 90 92 94 96)(97 99 101 103 105 107 109 111)(98 100 102 104 106 108 110 112)(113 115 117 119 121 123 125 127)(114 116 118 120 122 124 126 128)
(1 58 85 18 124 102 46 76)(2 77 47 103 125 19 86 59)(3 60 87 20 126 104 48 78)(4 79 33 105 127 21 88 61)(5 62 89 22 128 106 34 80)(6 65 35 107 113 23 90 63)(7 64 91 24 114 108 36 66)(8 67 37 109 115 25 92 49)(9 50 93 26 116 110 38 68)(10 69 39 111 117 27 94 51)(11 52 95 28 118 112 40 70)(12 71 41 97 119 29 96 53)(13 54 81 30 120 98 42 72)(14 73 43 99 121 31 82 55)(15 56 83 32 122 100 44 74)(16 75 45 101 123 17 84 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
G:=sub<Sym(128)| (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,19,21,23,25,27,29,31)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,51,53,55,57,59,61,63)(50,52,54,56,58,60,62,64)(65,67,69,71,73,75,77,79)(66,68,70,72,74,76,78,80)(81,83,85,87,89,91,93,95)(82,84,86,88,90,92,94,96)(97,99,101,103,105,107,109,111)(98,100,102,104,106,108,110,112)(113,115,117,119,121,123,125,127)(114,116,118,120,122,124,126,128), (1,58,85,18,124,102,46,76)(2,77,47,103,125,19,86,59)(3,60,87,20,126,104,48,78)(4,79,33,105,127,21,88,61)(5,62,89,22,128,106,34,80)(6,65,35,107,113,23,90,63)(7,64,91,24,114,108,36,66)(8,67,37,109,115,25,92,49)(9,50,93,26,116,110,38,68)(10,69,39,111,117,27,94,51)(11,52,95,28,118,112,40,70)(12,71,41,97,119,29,96,53)(13,54,81,30,120,98,42,72)(14,73,43,99,121,31,82,55)(15,56,83,32,122,100,44,74)(16,75,45,101,123,17,84,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;
G:=Group( (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,19,21,23,25,27,29,31)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,51,53,55,57,59,61,63)(50,52,54,56,58,60,62,64)(65,67,69,71,73,75,77,79)(66,68,70,72,74,76,78,80)(81,83,85,87,89,91,93,95)(82,84,86,88,90,92,94,96)(97,99,101,103,105,107,109,111)(98,100,102,104,106,108,110,112)(113,115,117,119,121,123,125,127)(114,116,118,120,122,124,126,128), (1,58,85,18,124,102,46,76)(2,77,47,103,125,19,86,59)(3,60,87,20,126,104,48,78)(4,79,33,105,127,21,88,61)(5,62,89,22,128,106,34,80)(6,65,35,107,113,23,90,63)(7,64,91,24,114,108,36,66)(8,67,37,109,115,25,92,49)(9,50,93,26,116,110,38,68)(10,69,39,111,117,27,94,51)(11,52,95,28,118,112,40,70)(12,71,41,97,119,29,96,53)(13,54,81,30,120,98,42,72)(14,73,43,99,121,31,82,55)(15,56,83,32,122,100,44,74)(16,75,45,101,123,17,84,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );
G=PermutationGroup([[(1,3,5,7,9,11,13,15),(2,4,6,8,10,12,14,16),(17,19,21,23,25,27,29,31),(18,20,22,24,26,28,30,32),(33,35,37,39,41,43,45,47),(34,36,38,40,42,44,46,48),(49,51,53,55,57,59,61,63),(50,52,54,56,58,60,62,64),(65,67,69,71,73,75,77,79),(66,68,70,72,74,76,78,80),(81,83,85,87,89,91,93,95),(82,84,86,88,90,92,94,96),(97,99,101,103,105,107,109,111),(98,100,102,104,106,108,110,112),(113,115,117,119,121,123,125,127),(114,116,118,120,122,124,126,128)], [(1,58,85,18,124,102,46,76),(2,77,47,103,125,19,86,59),(3,60,87,20,126,104,48,78),(4,79,33,105,127,21,88,61),(5,62,89,22,128,106,34,80),(6,65,35,107,113,23,90,63),(7,64,91,24,114,108,36,66),(8,67,37,109,115,25,92,49),(9,50,93,26,116,110,38,68),(10,69,39,111,117,27,94,51),(11,52,95,28,118,112,40,70),(12,71,41,97,119,29,96,53),(13,54,81,30,120,98,42,72),(14,73,43,99,121,31,82,55),(15,56,83,32,122,100,44,74),(16,75,45,101,123,17,84,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ··· | 8H | 8I | ··· | 8AB | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | |||||||
image | C1 | C2 | C2 | C4 | C8 | C16 | D4 | Q8 | D8 | Q16 | M4(2) | C8.C4 | M5(2) | C8.C8 |
kernel | C8.36D8 | C82 | C4⋊C16 | C4×C8 | C2×C8 | C8 | C2×C8 | C2×C8 | C8 | C8 | C2×C4 | C4 | C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 8 | 16 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 |
Matrix representation of C8.36D8 ►in GL4(𝔽17) generated by
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 10 | 11 |
0 | 0 | 4 | 13 |
3 | 0 | 0 | 0 |
0 | 14 | 0 | 0 |
0 | 0 | 1 | 4 |
0 | 0 | 5 | 16 |
G:=sub<GL(4,GF(17))| [9,0,0,0,0,9,0,0,0,0,4,0,0,0,0,4],[0,16,0,0,1,0,0,0,0,0,10,4,0,0,11,13],[3,0,0,0,0,14,0,0,0,0,1,5,0,0,4,16] >;
C8.36D8 in GAP, Magma, Sage, TeX
C_8._{36}D_8
% in TeX
G:=Group("C8.36D8");
// GroupNames label
G:=SmallGroup(128,102);
// by ID
G=gap.SmallGroup(128,102);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,148,422,100,136,124]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export