p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.5D8, D8.7D4, Q16.7D4, C42.144D4, M5(2).5C22, C8○D8.4C2, C4.69(C2×D8), C8.78(C2×D4), C8.C8⋊3C2, C8.3(C4○D4), (C2×C8).132D4, C4⋊Q16⋊16C2, C8.17D4⋊4C2, Q32⋊C2.2C2, C4.57(C4⋊D4), C2.26(C4⋊D8), (C2×C8).237C23, (C4×C8).164C22, C4○D8.20C22, (C2×Q16).47C22, C22.26(C8⋊C22), C8.C4.20C22, (C2×C4).282(C2×D4), SmallGroup(128,946)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.5D8
G = < a,b,c | a8=1, b8=c2=a4, bab-1=a3, cac-1=a-1, cbc-1=b7 >
Subgroups: 172 in 75 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C16, C42, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, Q16, Q16, C2×Q8, C4○D4, C4×C8, C4≀C2, C8.C4, M5(2), SD32, Q32, C4⋊Q8, C8○D4, C2×Q16, C2×Q16, C4○D8, C8.17D4, C8.C8, C8○D8, C4⋊Q16, Q32⋊C2, C8.5D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C8⋊C22, C4⋊D8, C8.5D8
Character table of C8.5D8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 2 | 2 | 4 | 4 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | 4 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2√2 | -2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2√2 | 2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 7 13 3 9 15 5 11)(2 4 6 8 10 12 14 16)(17 19 21 23 25 27 29 31)(18 24 30 20 26 32 22 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 26 9 18)(2 17 10 25)(3 24 11 32)(4 31 12 23)(5 22 13 30)(6 29 14 21)(7 20 15 28)(8 27 16 19)
G:=sub<Sym(32)| (1,7,13,3,9,15,5,11)(2,4,6,8,10,12,14,16)(17,19,21,23,25,27,29,31)(18,24,30,20,26,32,22,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,26,9,18)(2,17,10,25)(3,24,11,32)(4,31,12,23)(5,22,13,30)(6,29,14,21)(7,20,15,28)(8,27,16,19)>;
G:=Group( (1,7,13,3,9,15,5,11)(2,4,6,8,10,12,14,16)(17,19,21,23,25,27,29,31)(18,24,30,20,26,32,22,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,26,9,18)(2,17,10,25)(3,24,11,32)(4,31,12,23)(5,22,13,30)(6,29,14,21)(7,20,15,28)(8,27,16,19) );
G=PermutationGroup([[(1,7,13,3,9,15,5,11),(2,4,6,8,10,12,14,16),(17,19,21,23,25,27,29,31),(18,24,30,20,26,32,22,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,26,9,18),(2,17,10,25),(3,24,11,32),(4,31,12,23),(5,22,13,30),(6,29,14,21),(7,20,15,28),(8,27,16,19)]])
Matrix representation of C8.5D8 ►in GL4(𝔽7) generated by
5 | 0 | 0 | 2 |
1 | 3 | 3 | 4 |
1 | 0 | 0 | 1 |
5 | 3 | 6 | 6 |
3 | 0 | 6 | 6 |
4 | 5 | 2 | 3 |
1 | 6 | 1 | 5 |
3 | 1 | 5 | 5 |
3 | 0 | 6 | 1 |
1 | 1 | 0 | 2 |
1 | 6 | 1 | 5 |
5 | 6 | 4 | 2 |
G:=sub<GL(4,GF(7))| [5,1,1,5,0,3,0,3,0,3,0,6,2,4,1,6],[3,4,1,3,0,5,6,1,6,2,1,5,6,3,5,5],[3,1,1,5,0,1,6,6,6,0,1,4,1,2,5,2] >;
C8.5D8 in GAP, Magma, Sage, TeX
C_8._5D_8
% in TeX
G:=Group("C8.5D8");
// GroupNames label
G:=SmallGroup(128,946);
// by ID
G=gap.SmallGroup(128,946);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,512,422,2019,248,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^8=c^2=a^4,b*a*b^-1=a^3,c*a*c^-1=a^-1,c*b*c^-1=b^7>;
// generators/relations
Export