Extensions 1→N→G→Q→1 with N=C8 and Q=C4○D4

Direct product G=N×Q with N=C8 and Q=C4○D4
dρLabelID
C8×C4○D464C8xC4oD4128,1696

Semidirect products G=N:Q with N=C8 and Q=C4○D4
extensionφ:Q→Aut NdρLabelID
C81(C4○D4) = C42.255D4φ: C4○D4/C4C22 ⊆ Aut C864C8:1(C4oD4)128,1903
C82(C4○D4) = C42.259D4φ: C4○D4/C4C22 ⊆ Aut C864C8:2(C4oD4)128,1914
C83(C4○D4) = C42.261D4φ: C4○D4/C4C22 ⊆ Aut C864C8:3(C4oD4)128,1916
C84(C4○D4) = C42.494C23φ: C4○D4/C4C22 ⊆ Aut C864C8:4(C4oD4)128,2085
C85(C4○D4) = C42.495C23φ: C4○D4/C4C22 ⊆ Aut C864C8:5(C4oD4)128,2086
C86(C4○D4) = C42.72C23φ: C4○D4/C4C22 ⊆ Aut C864C8:6(C4oD4)128,2129
C87(C4○D4) = C42.74C23φ: C4○D4/C4C22 ⊆ Aut C864C8:7(C4oD4)128,2131
C88(C4○D4) = C42.257D4φ: C4○D4/C22C22 ⊆ Aut C864C8:8(C4oD4)128,1912
C89(C4○D4) = C42.57C23φ: C4○D4/C22C22 ⊆ Aut C864C8:9(C4oD4)128,2075
C810(C4○D4) = C42.59C23φ: C4○D4/C22C22 ⊆ Aut C864C8:10(C4oD4)128,2077
C811(C4○D4) = C42.366D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8:11(C4oD4)128,1901
C812(C4○D4) = C42.365D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8:12(C4oD4)128,1899
C813(C4○D4) = C42.290C23φ: C4○D4/C2×C4C2 ⊆ Aut C864C8:13(C4oD4)128,1697
C814(C4○D4) = D45D8φ: C4○D4/D4C2 ⊆ Aut C864C8:14(C4oD4)128,2066
C815(C4○D4) = D49SD16φ: C4○D4/D4C2 ⊆ Aut C864C8:15(C4oD4)128,2067
C816(C4○D4) = D46M4(2)φ: C4○D4/D4C2 ⊆ Aut C864C8:16(C4oD4)128,1702
C817(C4○D4) = Q85D8φ: C4○D4/Q8C2 ⊆ Aut C864C8:17(C4oD4)128,2123
C818(C4○D4) = Q89SD16φ: C4○D4/Q8C2 ⊆ Aut C864C8:18(C4oD4)128,2124
C819(C4○D4) = Q86M4(2)φ: C4○D4/Q8C2 ⊆ Aut C864C8:19(C4oD4)128,1703

Non-split extensions G=N.Q with N=C8 and Q=C4○D4
extensionφ:Q→Aut NdρLabelID
C8.1(C4○D4) = C8.3D8φ: C4○D4/C4C22 ⊆ Aut C8324C8.1(C4oD4)128,944
C8.2(C4○D4) = D83D4φ: C4○D4/C4C22 ⊆ Aut C8164+C8.2(C4oD4)128,945
C8.3(C4○D4) = C8.5D8φ: C4○D4/C4C22 ⊆ Aut C8324-C8.3(C4oD4)128,946
C8.4(C4○D4) = D4.3D8φ: C4○D4/C4C22 ⊆ Aut C8324+C8.4(C4oD4)128,953
C8.5(C4○D4) = D4.4D8φ: C4○D4/C4C22 ⊆ Aut C8644-C8.5(C4oD4)128,954
C8.6(C4○D4) = D4.5D8φ: C4○D4/C4C22 ⊆ Aut C8324C8.6(C4oD4)128,955
C8.7(C4○D4) = C42.256D4φ: C4○D4/C4C22 ⊆ Aut C864C8.7(C4oD4)128,1904
C8.8(C4○D4) = C42.385C23φ: C4○D4/C4C22 ⊆ Aut C864C8.8(C4oD4)128,1905
C8.9(C4○D4) = C42.386C23φ: C4○D4/C4C22 ⊆ Aut C864C8.9(C4oD4)128,1906
C8.10(C4○D4) = C42.387C23φ: C4○D4/C4C22 ⊆ Aut C864C8.10(C4oD4)128,1907
C8.11(C4○D4) = C42.388C23φ: C4○D4/C4C22 ⊆ Aut C864C8.11(C4oD4)128,1908
C8.12(C4○D4) = C42.389C23φ: C4○D4/C4C22 ⊆ Aut C864C8.12(C4oD4)128,1909
C8.13(C4○D4) = C42.260D4φ: C4○D4/C4C22 ⊆ Aut C864C8.13(C4oD4)128,1915
C8.14(C4○D4) = C42.262D4φ: C4○D4/C4C22 ⊆ Aut C864C8.14(C4oD4)128,1917
C8.15(C4○D4) = C42.492C23φ: C4○D4/C4C22 ⊆ Aut C864C8.15(C4oD4)128,2083
C8.16(C4○D4) = C42.493C23φ: C4○D4/C4C22 ⊆ Aut C864C8.16(C4oD4)128,2084
C8.17(C4○D4) = C42.496C23φ: C4○D4/C4C22 ⊆ Aut C864C8.17(C4oD4)128,2087
C8.18(C4○D4) = C42.497C23φ: C4○D4/C4C22 ⊆ Aut C864C8.18(C4oD4)128,2088
C8.19(C4○D4) = C42.498C23φ: C4○D4/C4C22 ⊆ Aut C864C8.19(C4oD4)128,2089
C8.20(C4○D4) = C42.73C23φ: C4○D4/C4C22 ⊆ Aut C864C8.20(C4oD4)128,2130
C8.21(C4○D4) = C42.75C23φ: C4○D4/C4C22 ⊆ Aut C864C8.21(C4oD4)128,2132
C8.22(C4○D4) = C42.531C23φ: C4○D4/C4C22 ⊆ Aut C864C8.22(C4oD4)128,2133
C8.23(C4○D4) = C42.532C23φ: C4○D4/C4C22 ⊆ Aut C864C8.23(C4oD4)128,2134
C8.24(C4○D4) = C42.533C23φ: C4○D4/C4C22 ⊆ Aut C864C8.24(C4oD4)128,2135
C8.25(C4○D4) = Q32⋊C4φ: C4○D4/C22C22 ⊆ Aut C8328-C8.25(C4oD4)128,912
C8.26(C4○D4) = D16⋊C4φ: C4○D4/C22C22 ⊆ Aut C8168+C8.26(C4oD4)128,913
C8.27(C4○D4) = M5(2).C22φ: C4○D4/C22C22 ⊆ Aut C8168+C8.27(C4oD4)128,970
C8.28(C4○D4) = C23.10SD16φ: C4○D4/C22C22 ⊆ Aut C8328-C8.28(C4oD4)128,971
C8.29(C4○D4) = C42.390C23φ: C4○D4/C22C22 ⊆ Aut C864C8.29(C4oD4)128,1910
C8.30(C4○D4) = C42.391C23φ: C4○D4/C22C22 ⊆ Aut C864C8.30(C4oD4)128,1911
C8.31(C4○D4) = C42.258D4φ: C4○D4/C22C22 ⊆ Aut C864C8.31(C4oD4)128,1913
C8.32(C4○D4) = C42.58C23φ: C4○D4/C22C22 ⊆ Aut C864C8.32(C4oD4)128,2076
C8.33(C4○D4) = C42.60C23φ: C4○D4/C22C22 ⊆ Aut C864C8.33(C4oD4)128,2078
C8.34(C4○D4) = C42.61C23φ: C4○D4/C22C22 ⊆ Aut C864C8.34(C4oD4)128,2079
C8.35(C4○D4) = C42.62C23φ: C4○D4/C22C22 ⊆ Aut C864C8.35(C4oD4)128,2080
C8.36(C4○D4) = C42.63C23φ: C4○D4/C22C22 ⊆ Aut C864C8.36(C4oD4)128,2081
C8.37(C4○D4) = C42.64C23φ: C4○D4/C22C22 ⊆ Aut C864C8.37(C4oD4)128,2082
C8.38(C4○D4) = C4×D16φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.38(C4oD4)128,904
C8.39(C4○D4) = C4×SD32φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.39(C4oD4)128,905
C8.40(C4○D4) = C4×Q32φ: C4○D4/C2×C4C2 ⊆ Aut C8128C8.40(C4oD4)128,906
C8.41(C4○D4) = SD323C4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.41(C4oD4)128,907
C8.42(C4○D4) = Q324C4φ: C4○D4/C2×C4C2 ⊆ Aut C8128C8.42(C4oD4)128,908
C8.43(C4○D4) = D164C4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.43(C4oD4)128,909
C8.44(C4○D4) = C167D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.44(C4oD4)128,947
C8.45(C4○D4) = C16.19D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.45(C4oD4)128,948
C8.46(C4○D4) = C168D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.46(C4oD4)128,949
C8.47(C4○D4) = C16⋊D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.47(C4oD4)128,950
C8.48(C4○D4) = C16.D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.48(C4oD4)128,951
C8.49(C4○D4) = C162D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.49(C4oD4)128,952
C8.50(C4○D4) = C4.4D16φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.50(C4oD4)128,972
C8.51(C4○D4) = C4.SD32φ: C4○D4/C2×C4C2 ⊆ Aut C8128C8.51(C4oD4)128,973
C8.52(C4○D4) = C8.22SD16φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.52(C4oD4)128,974
C8.53(C4○D4) = C8.12SD16φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.53(C4oD4)128,975
C8.54(C4○D4) = C8.13SD16φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.54(C4oD4)128,976
C8.55(C4○D4) = C8.14SD16φ: C4○D4/C2×C4C2 ⊆ Aut C8128C8.55(C4oD4)128,977
C8.56(C4○D4) = C42.308D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.56(C4oD4)128,1900
C8.57(C4○D4) = C42.367D4φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.57(C4oD4)128,1902
C8.58(C4○D4) = C8○D16φ: C4○D4/C2×C4C2 ⊆ Aut C8322C8.58(C4oD4)128,910
C8.59(C4○D4) = D165C4φ: C4○D4/C2×C4C2 ⊆ Aut C8324C8.59(C4oD4)128,911
C8.60(C4○D4) = C16○D8φ: C4○D4/C2×C4C2 ⊆ Aut C8322C8.60(C4oD4)128,902
C8.61(C4○D4) = D8.C8φ: C4○D4/C2×C4C2 ⊆ Aut C8324C8.61(C4oD4)128,903
C8.62(C4○D4) = C42.292C23φ: C4○D4/C2×C4C2 ⊆ Aut C864C8.62(C4oD4)128,1699
C8.63(C4○D4) = D81Q8φ: C4○D4/D4C2 ⊆ Aut C864C8.63(C4oD4)128,956
C8.64(C4○D4) = Q16⋊Q8φ: C4○D4/D4C2 ⊆ Aut C8128C8.64(C4oD4)128,957
C8.65(C4○D4) = D8⋊Q8φ: C4○D4/D4C2 ⊆ Aut C864C8.65(C4oD4)128,958
C8.66(C4○D4) = C4.Q32φ: C4○D4/D4C2 ⊆ Aut C8128C8.66(C4oD4)128,959
C8.67(C4○D4) = D8.Q8φ: C4○D4/D4C2 ⊆ Aut C864C8.67(C4oD4)128,960
C8.68(C4○D4) = Q16.Q8φ: C4○D4/D4C2 ⊆ Aut C8128C8.68(C4oD4)128,961
C8.69(C4○D4) = C22.D16φ: C4○D4/D4C2 ⊆ Aut C864C8.69(C4oD4)128,964
C8.70(C4○D4) = C23.49D8φ: C4○D4/D4C2 ⊆ Aut C864C8.70(C4oD4)128,965
C8.71(C4○D4) = C23.19D8φ: C4○D4/D4C2 ⊆ Aut C864C8.71(C4oD4)128,966
C8.72(C4○D4) = C23.50D8φ: C4○D4/D4C2 ⊆ Aut C864C8.72(C4oD4)128,967
C8.73(C4○D4) = C23.51D8φ: C4○D4/D4C2 ⊆ Aut C864C8.73(C4oD4)128,968
C8.74(C4○D4) = C23.20D8φ: C4○D4/D4C2 ⊆ Aut C864C8.74(C4oD4)128,969
C8.75(C4○D4) = C42.485C23φ: C4○D4/D4C2 ⊆ Aut C864C8.75(C4oD4)128,2068
C8.76(C4○D4) = D46Q16φ: C4○D4/D4C2 ⊆ Aut C864C8.76(C4oD4)128,2070
C8.77(C4○D4) = C42.488C23φ: C4○D4/D4C2 ⊆ Aut C864C8.77(C4oD4)128,2071
C8.78(C4○D4) = C42.490C23φ: C4○D4/D4C2 ⊆ Aut C864C8.78(C4oD4)128,2073
C8.79(C4○D4) = C42.491C23φ: C4○D4/D4C2 ⊆ Aut C864C8.79(C4oD4)128,2074
C8.80(C4○D4) = D83Q8φ: C4○D4/D4C2 ⊆ Aut C8164C8.80(C4oD4)128,962
C8.81(C4○D4) = D8.2Q8φ: C4○D4/D4C2 ⊆ Aut C8324C8.81(C4oD4)128,963
C8.82(C4○D4) = C42.486C23φ: C4○D4/D4C2 ⊆ Aut C864C8.82(C4oD4)128,2069
C8.83(C4○D4) = C42.489C23φ: C4○D4/D4C2 ⊆ Aut C864C8.83(C4oD4)128,2072
C8.84(C4○D4) = C8.5M4(2)φ: C4○D4/D4C2 ⊆ Aut C8164C8.84(C4oD4)128,897
C8.85(C4○D4) = C8.19M4(2)φ: C4○D4/D4C2 ⊆ Aut C8324C8.85(C4oD4)128,898
C8.86(C4○D4) = C42.293C23φ: C4○D4/D4C2 ⊆ Aut C864C8.86(C4oD4)128,1700
C8.87(C4○D4) = C42.294C23φ: C4○D4/D4C2 ⊆ Aut C864C8.87(C4oD4)128,1701
C8.88(C4○D4) = D82D4φ: C4○D4/Q8C2 ⊆ Aut C864C8.88(C4oD4)128,938
C8.89(C4○D4) = Q162D4φ: C4○D4/Q8C2 ⊆ Aut C864C8.89(C4oD4)128,939
C8.90(C4○D4) = D8.4D4φ: C4○D4/Q8C2 ⊆ Aut C864C8.90(C4oD4)128,940
C8.91(C4○D4) = Q16.4D4φ: C4○D4/Q8C2 ⊆ Aut C8128C8.91(C4oD4)128,941
C8.92(C4○D4) = D8.5D4φ: C4○D4/Q8C2 ⊆ Aut C864C8.92(C4oD4)128,942
C8.93(C4○D4) = Q16.5D4φ: C4○D4/Q8C2 ⊆ Aut C864C8.93(C4oD4)128,943
C8.94(C4○D4) = C42.527C23φ: C4○D4/Q8C2 ⊆ Aut C864C8.94(C4oD4)128,2125
C8.95(C4○D4) = Q86Q16φ: C4○D4/Q8C2 ⊆ Aut C8128C8.95(C4oD4)128,2127
C8.96(C4○D4) = C42.530C23φ: C4○D4/Q8C2 ⊆ Aut C864C8.96(C4oD4)128,2128
C8.97(C4○D4) = C42.528C23φ: C4○D4/Q8C2 ⊆ Aut C864C8.97(C4oD4)128,2126
C8.98(C4○D4) = C42.13C8central extension (φ=1)64C8.98(C4oD4)128,894
C8.99(C4○D4) = C42.6C8central extension (φ=1)64C8.99(C4oD4)128,895
C8.100(C4○D4) = C8.12M4(2)central extension (φ=1)64C8.100(C4oD4)128,896
C8.101(C4○D4) = D4×C16central extension (φ=1)64C8.101(C4oD4)128,899
C8.102(C4○D4) = C169D4central extension (φ=1)64C8.102(C4oD4)128,900
C8.103(C4○D4) = C166D4central extension (φ=1)64C8.103(C4oD4)128,901
C8.104(C4○D4) = Q8×C16central extension (φ=1)128C8.104(C4oD4)128,914
C8.105(C4○D4) = C164Q8central extension (φ=1)128C8.105(C4oD4)128,915
C8.106(C4○D4) = C42.291C23central extension (φ=1)64C8.106(C4oD4)128,1698

׿
×
𝔽