Copied to
clipboard

G = C32⋊C4order 128 = 27

2nd semidirect product of C32 and C4 acting faithfully

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C322C4, C16.2C8, C42.3C8, C8.21C42, C4.6M5(2), M6(2).2C2, C22.4M5(2), (C4×C8).8C4, (C2×C8).3C8, C8.22(C2×C8), C4.20(C4×C8), (C2×C16).5C4, C16.22(C2×C4), C165C4.8C2, C2.4(C165C4), (C2×C16).48C22, (C2×C4).76(C2×C8), (C2×C8).240(C2×C4), SmallGroup(128,130)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C32⋊C4
C1C2C4C8C2×C8C2×C16C165C4 — C32⋊C4
C1C4 — C32⋊C4
C1C8 — C32⋊C4
C1C2C2C2C2C2C2C2C2C4C4C4C4C8C8C2×C16 — C32⋊C4

Generators and relations for C32⋊C4
 G = < a,b | a32=b4=1, bab-1=a9 >

2C2
4C4
2C2×C4
2C8

Smallest permutation representation of C32⋊C4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 26 18 10)(3 19)(4 12 20 28)(6 30 22 14)(7 23)(8 16 24 32)(11 27)(15 31)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,26,18,10)(3,19)(4,12,20,28)(6,30,22,14)(7,23)(8,16,24,32)(11,27)(15,31)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,26,18,10)(3,19)(4,12,20,28)(6,30,22,14)(7,23)(8,16,24,32)(11,27)(15,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,26,18,10),(3,19),(4,12,20,28),(6,30,22,14),(7,23),(8,16,24,32),(11,27),(15,31)]])

44 conjugacy classes

class 1 2A2B4A4B4C4D4E8A8B8C8D8E8F8G8H16A···16H16I16J16K16L32A···32P
order122444448888888816···161616161632···32
size11211244111122442···244444···4

44 irreducible representations

dim111111111224
type+++
imageC1C2C2C4C4C4C8C8C8M5(2)M5(2)C32⋊C4
kernelC32⋊C4C165C4M6(2)C32C4×C8C2×C16C16C42C2×C8C4C22C1
# reps112822844444

Matrix representation of C32⋊C4 in GL4(𝔽97) generated by

0010
00096
02200
64000
,
1000
09600
00750
00022
G:=sub<GL(4,GF(97))| [0,0,0,64,0,0,22,0,1,0,0,0,0,96,0,0],[1,0,0,0,0,96,0,0,0,0,75,0,0,0,0,22] >;

C32⋊C4 in GAP, Magma, Sage, TeX

C_{32}\rtimes C_4
% in TeX

G:=Group("C32:C4");
// GroupNames label

G:=SmallGroup(128,130);
// by ID

G=gap.SmallGroup(128,130);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,28,477,64,723,100,2019,102,124]);
// Polycyclic

G:=Group<a,b|a^32=b^4=1,b*a*b^-1=a^9>;
// generators/relations

Export

Subgroup lattice of C32⋊C4 in TeX

׿
×
𝔽