Extensions 1→N→G→Q→1 with N=M6(2) and Q=C2

Direct product G=N×Q with N=M6(2) and Q=C2
dρLabelID
C2×M6(2)64C2xM6(2)128,989

Semidirect products G=N:Q with N=M6(2) and Q=C2
extensionφ:Q→Out NdρLabelID
M6(2)⋊1C2 = C32⋊C22φ: C2/C1C2 ⊆ Out M6(2)324+M6(2):1C2128,995
M6(2)⋊2C2 = Q64⋊C2φ: C2/C1C2 ⊆ Out M6(2)644-M6(2):2C2128,996
M6(2)⋊3C2 = C23.C16φ: C2/C1C2 ⊆ Out M6(2)324M6(2):3C2128,132
M6(2)⋊4C2 = D4.C16φ: C2/C1C2 ⊆ Out M6(2)642M6(2):4C2128,133
M6(2)⋊5C2 = D163C4φ: C2/C1C2 ⊆ Out M6(2)324M6(2):5C2128,150
M6(2)⋊6C2 = M6(2)⋊C2φ: C2/C1C2 ⊆ Out M6(2)324+M6(2):6C2128,151
M6(2)⋊7C2 = D4○C32φ: trivial image642M6(2):7C2128,990

Non-split extensions G=N.Q with N=M6(2) and Q=C2
extensionφ:Q→Out NdρLabelID
M6(2).1C2 = C8.Q16φ: C2/C1C2 ⊆ Out M6(2)324M6(2).1C2128,158
M6(2).2C2 = C32⋊C4φ: C2/C1C2 ⊆ Out M6(2)324M6(2).2C2128,130
M6(2).3C2 = C16.18D4φ: C2/C1C2 ⊆ Out M6(2)644-M6(2).3C2128,152
M6(2).4C2 = C8.C16φ: C2/C1C2 ⊆ Out M6(2)322M6(2).4C2128,154

׿
×
𝔽