p-group, metacyclic, nilpotent (class 5), monomial
Aliases: C32⋊1C4, C16.Q8, C8.2Q16, C4.9SD32, M6(2).1C2, C22.5SD32, (C2×C4).15D8, (C2×C8).87D4, C8.18(C4⋊C4), C16.19(C2×C4), C16⋊4C4.1C2, C2.3(C16⋊4C4), C4.13(C2.D8), C8.4Q8.3C2, (C2×C16).16C22, SmallGroup(128,158)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.Q16
G = < a,b,c | a8=1, b8=a2, c2=a-1b4, bab-1=a5, cac-1=a-1, cbc-1=a4b7 >
Character table of C8.Q16
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 16A | 16B | 16C | 16D | 16E | 16F | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 2 | 2 | 2 | 16 | 16 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -i | i | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -i | i | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | i | -i | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | i | -i | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ16 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ20 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ21 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 2ζ167+2ζ16 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 2ζ1613+2ζ1611 | 2ζ1615+2ζ169 | 2ζ165+2ζ163 | 2ζ167+2ζ16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 5 9 13 17 21 25 29)(2 22 10 30 18 6 26 14)(3 7 11 15 19 23 27 31)(4 24 12 32 20 8 28 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 8 18 24)(3 15)(4 22 20 6)(5 29)(7 11)(9 25)(10 32 26 16)(12 14 28 30)(13 21)(19 31)(23 27)
G:=sub<Sym(32)| (1,5,9,13,17,21,25,29)(2,22,10,30,18,6,26,14)(3,7,11,15,19,23,27,31)(4,24,12,32,20,8,28,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,8,18,24)(3,15)(4,22,20,6)(5,29)(7,11)(9,25)(10,32,26,16)(12,14,28,30)(13,21)(19,31)(23,27)>;
G:=Group( (1,5,9,13,17,21,25,29)(2,22,10,30,18,6,26,14)(3,7,11,15,19,23,27,31)(4,24,12,32,20,8,28,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,8,18,24)(3,15)(4,22,20,6)(5,29)(7,11)(9,25)(10,32,26,16)(12,14,28,30)(13,21)(19,31)(23,27) );
G=PermutationGroup([[(1,5,9,13,17,21,25,29),(2,22,10,30,18,6,26,14),(3,7,11,15,19,23,27,31),(4,24,12,32,20,8,28,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,8,18,24),(3,15),(4,22,20,6),(5,29),(7,11),(9,25),(10,32,26,16),(12,14,28,30),(13,21),(19,31),(23,27)]])
Matrix representation of C8.Q16 ►in GL4(𝔽7) generated by
1 | 6 | 5 | 1 |
6 | 5 | 2 | 5 |
5 | 0 | 4 | 4 |
4 | 1 | 5 | 4 |
1 | 1 | 3 | 6 |
2 | 3 | 2 | 5 |
1 | 3 | 1 | 5 |
6 | 5 | 1 | 2 |
6 | 0 | 6 | 6 |
0 | 4 | 6 | 2 |
0 | 5 | 0 | 6 |
0 | 2 | 5 | 4 |
G:=sub<GL(4,GF(7))| [1,6,5,4,6,5,0,1,5,2,4,5,1,5,4,4],[1,2,1,6,1,3,3,5,3,2,1,1,6,5,5,2],[6,0,0,0,0,4,5,2,6,6,0,5,6,2,6,4] >;
C8.Q16 in GAP, Magma, Sage, TeX
C_8.Q_{16}
% in TeX
G:=Group("C8.Q16");
// GroupNames label
G:=SmallGroup(128,158);
// by ID
G=gap.SmallGroup(128,158);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,372,422,604,1018,1684,242,4037,124]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^8=a^2,c^2=a^-1*b^4,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=a^4*b^7>;
// generators/relations
Export
Subgroup lattice of C8.Q16 in TeX
Character table of C8.Q16 in TeX