p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4○D4⋊2D4, (C2×Q8)⋊16D4, Q8⋊D4⋊3C2, D4.45(C2×D4), Q8.45(C2×D4), D4⋊D4⋊16C2, C4.41C22≀C2, (C2×D4).294D4, C4⋊C4.12C23, C22⋊C8⋊9C22, C4.47(C22×D4), (C2×C4).229C24, (C2×C8).301C23, C2.9(D4○SD16), (C2×D4).30C23, (C2×D8).52C22, C23.233(C2×D4), D4⋊C4⋊72C22, C22.29C24⋊4C2, Q8⋊C4⋊15C22, C22.21C22≀C2, (C22×SD16)⋊20C2, C23.38D4⋊4C2, C4⋊D4.17C22, (C2×2- 1+4)⋊1C2, (C2×Q8).355C23, (C22×Q8)⋊15C22, C23.24D4⋊22C2, (C22×C4).277C23, (C22×C8).336C22, C22.489(C22×D4), C42⋊C2.97C22, (C2×SD16).129C22, (C22×D4).327C22, (C2×M4(2)).41C22, (C2×C8⋊C22)⋊9C2, (C2×C4).456(C2×D4), (C2×C4○D4)⋊4C22, (C22×C8)⋊C2⋊5C2, C2.47(C2×C22≀C2), SmallGroup(128,1742)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×Q8)⋊16D4
G = < a,b,c,d,e | a2=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, dad-1=ab2, ae=ea, cbc-1=b-1, dbd-1=abc, ebe=ab-1c, cd=dc, ece=b2c, ede=d-1 >
Subgroups: 732 in 366 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4⋊1D4, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×SD16, C8⋊C22, C22×D4, C22×Q8, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2- 1+4, (C22×C8)⋊C2, C23.24D4, C23.38D4, Q8⋊D4, D4⋊D4, C22.29C24, C22×SD16, C2×C8⋊C22, C2×2- 1+4, (C2×Q8)⋊16D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2, D4○SD16, (C2×Q8)⋊16D4
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 17)(12 18)(13 22)(14 23)(15 24)(16 21)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 3 23)(2 24 4 22)(5 16 7 14)(6 15 8 13)(9 29 11 31)(10 32 12 30)(17 27 19 25)(18 26 20 28)
(1 29 7 25)(2 20 8 10)(3 31 5 27)(4 18 6 12)(9 16 19 23)(11 14 17 21)(13 32 24 28)(15 30 22 26)
(2 13)(4 15)(6 22)(8 24)(9 17)(10 32)(11 19)(12 30)(14 16)(18 26)(20 28)(21 23)(25 29)(27 31)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,22)(14,23)(15,24)(16,21)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,24,4,22)(5,16,7,14)(6,15,8,13)(9,29,11,31)(10,32,12,30)(17,27,19,25)(18,26,20,28), (1,29,7,25)(2,20,8,10)(3,31,5,27)(4,18,6,12)(9,16,19,23)(11,14,17,21)(13,32,24,28)(15,30,22,26), (2,13)(4,15)(6,22)(8,24)(9,17)(10,32)(11,19)(12,30)(14,16)(18,26)(20,28)(21,23)(25,29)(27,31)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,22)(14,23)(15,24)(16,21)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,24,4,22)(5,16,7,14)(6,15,8,13)(9,29,11,31)(10,32,12,30)(17,27,19,25)(18,26,20,28), (1,29,7,25)(2,20,8,10)(3,31,5,27)(4,18,6,12)(9,16,19,23)(11,14,17,21)(13,32,24,28)(15,30,22,26), (2,13)(4,15)(6,22)(8,24)(9,17)(10,32)(11,19)(12,30)(14,16)(18,26)(20,28)(21,23)(25,29)(27,31) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,17),(12,18),(13,22),(14,23),(15,24),(16,21),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,3,23),(2,24,4,22),(5,16,7,14),(6,15,8,13),(9,29,11,31),(10,32,12,30),(17,27,19,25),(18,26,20,28)], [(1,29,7,25),(2,20,8,10),(3,31,5,27),(4,18,6,12),(9,16,19,23),(11,14,17,21),(13,32,24,28),(15,30,22,26)], [(2,13),(4,15),(6,22),(8,24),(9,17),(10,32),(11,19),(12,30),(14,16),(18,26),(20,28),(21,23),(25,29),(27,31)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4○SD16 |
kernel | (C2×Q8)⋊16D4 | (C22×C8)⋊C2 | C23.24D4 | C23.38D4 | Q8⋊D4 | D4⋊D4 | C22.29C24 | C22×SD16 | C2×C8⋊C22 | C2×2- 1+4 | C2×D4 | C2×Q8 | C4○D4 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 3 | 5 | 4 | 4 |
Matrix representation of (C2×Q8)⋊16D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 5 |
0 | 0 | 0 | 0 | 5 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,12,12,0,0,0,0,12,5,0,0,0,0,0,0,5,5,0,0,0,0,5,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1] >;
(C2×Q8)⋊16D4 in GAP, Magma, Sage, TeX
(C_2\times Q_8)\rtimes_{16}D_4
% in TeX
G:=Group("(C2xQ8):16D4");
// GroupNames label
G:=SmallGroup(128,1742);
// by ID
G=gap.SmallGroup(128,1742);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,521,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=a*b*c,e*b*e=a*b^-1*c,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations