p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4○D4.13D4, D4.44(C2×D4), Q8.44(C2×D4), C4.40C22≀C2, C22⋊SD16⋊3C2, (C2×D4).146D4, C4⋊C4.11C23, C22⋊C8⋊8C22, (C2×Q8).230D4, C4.46(C22×D4), C22⋊Q8⋊1C22, D4.7D4⋊15C2, (C2×C4).228C24, (C2×C8).300C23, (C22×C8)⋊35C22, C2.8(D4○SD16), (C2×Q16)⋊15C22, C23.232(C2×D4), (C2×Q8).22C23, D4⋊C4⋊13C22, C42⋊C2⋊8C22, Q8⋊C4⋊75C22, C22.20C22≀C2, (C22×SD16)⋊19C2, (C2×SD16)⋊70C22, (C2×D4).382C23, C23.37D4⋊5C2, (C2×M4(2))⋊5C22, (C22×Q8)⋊14C22, C23.24D4⋊21C2, (C22×C4).276C23, C22.488(C22×D4), (C2×2+ 1+4).7C2, C23.38C23⋊3C2, (C22×D4).326C22, (C2×C4).455(C2×D4), (C2×C8.C22)⋊8C2, (C22×C8)⋊C2⋊4C2, C2.46(C2×C22≀C2), (C2×C4○D4).101C22, SmallGroup(128,1741)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.(C2×D4)
G = < a,b,c,d,e | a4=b2=1, c2=d4=e2=a2, bab=eae-1=a-1, ac=ca, ad=da, bc=cb, dbd-1=ebe-1=a-1b, cd=dc, ece-1=a2c, ede-1=d3 >
Subgroups: 796 in 376 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16, C2×SD16, C2×Q16, C8.C22, C22×D4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, (C22×C8)⋊C2, C23.24D4, C23.37D4, C22⋊SD16, D4.7D4, C23.38C23, C22×SD16, C2×C8.C22, C2×2+ 1+4, D4.(C2×D4)
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2, D4○SD16, D4.(C2×D4)
(1 26 5 30)(2 27 6 31)(3 28 7 32)(4 29 8 25)(9 19 13 23)(10 20 14 24)(11 21 15 17)(12 22 16 18)
(2 27)(3 7)(4 25)(6 31)(8 29)(10 20)(11 15)(12 18)(14 24)(16 22)(19 23)(26 30)
(1 21 5 17)(2 22 6 18)(3 23 7 19)(4 24 8 20)(9 32 13 28)(10 25 14 29)(11 26 15 30)(12 27 16 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 27 5 31)(2 30 6 26)(3 25 7 29)(4 28 8 32)(9 24 13 20)(10 19 14 23)(11 22 15 18)(12 17 16 21)
G:=sub<Sym(32)| (1,26,5,30)(2,27,6,31)(3,28,7,32)(4,29,8,25)(9,19,13,23)(10,20,14,24)(11,21,15,17)(12,22,16,18), (2,27)(3,7)(4,25)(6,31)(8,29)(10,20)(11,15)(12,18)(14,24)(16,22)(19,23)(26,30), (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,32,13,28)(10,25,14,29)(11,26,15,30)(12,27,16,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,5,31)(2,30,6,26)(3,25,7,29)(4,28,8,32)(9,24,13,20)(10,19,14,23)(11,22,15,18)(12,17,16,21)>;
G:=Group( (1,26,5,30)(2,27,6,31)(3,28,7,32)(4,29,8,25)(9,19,13,23)(10,20,14,24)(11,21,15,17)(12,22,16,18), (2,27)(3,7)(4,25)(6,31)(8,29)(10,20)(11,15)(12,18)(14,24)(16,22)(19,23)(26,30), (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,32,13,28)(10,25,14,29)(11,26,15,30)(12,27,16,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,27,5,31)(2,30,6,26)(3,25,7,29)(4,28,8,32)(9,24,13,20)(10,19,14,23)(11,22,15,18)(12,17,16,21) );
G=PermutationGroup([[(1,26,5,30),(2,27,6,31),(3,28,7,32),(4,29,8,25),(9,19,13,23),(10,20,14,24),(11,21,15,17),(12,22,16,18)], [(2,27),(3,7),(4,25),(6,31),(8,29),(10,20),(11,15),(12,18),(14,24),(16,22),(19,23),(26,30)], [(1,21,5,17),(2,22,6,18),(3,23,7,19),(4,24,8,20),(9,32,13,28),(10,25,14,29),(11,26,15,30),(12,27,16,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,27,5,31),(2,30,6,26),(3,25,7,29),(4,28,8,32),(9,24,13,20),(10,19,14,23),(11,22,15,18),(12,17,16,21)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4○SD16 |
kernel | D4.(C2×D4) | (C22×C8)⋊C2 | C23.24D4 | C23.37D4 | C22⋊SD16 | D4.7D4 | C23.38C23 | C22×SD16 | C2×C8.C22 | C2×2+ 1+4 | C2×D4 | C2×Q8 | C4○D4 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 7 | 1 | 4 | 4 |
Matrix representation of D4.(C2×D4) ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 16 | 16 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
7 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 15 |
0 | 0 | 16 | 0 | 16 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 16 |
10 | 2 | 0 | 0 | 0 | 0 |
10 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 10 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 5 | 12 |
0 | 0 | 5 | 5 | 5 | 5 |
10 | 2 | 0 | 0 | 0 | 0 |
10 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 10 | 0 | 0 |
0 | 0 | 12 | 7 | 0 | 0 |
0 | 0 | 0 | 12 | 5 | 12 |
0 | 0 | 5 | 5 | 12 | 12 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,1,0,16,0,0,15,1,1,16,0,0,0,0,0,16,0,0,0,0,1,0],[1,7,0,0,0,0,0,16,0,0,0,0,0,0,1,16,16,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,15,1,1,16],[10,10,0,0,0,0,2,7,0,0,0,0,0,0,10,12,0,5,0,0,10,0,12,5,0,0,0,0,5,5,0,0,0,0,12,5],[10,10,0,0,0,0,2,7,0,0,0,0,0,0,10,12,0,5,0,0,10,7,12,5,0,0,0,0,5,12,0,0,0,0,12,12] >;
D4.(C2×D4) in GAP, Magma, Sage, TeX
D_4.(C_2\times D_4)
% in TeX
G:=Group("D4.(C2xD4)");
// GroupNames label
G:=SmallGroup(128,1741);
// by ID
G=gap.SmallGroup(128,1741);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,521,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=1,c^2=d^4=e^2=a^2,b*a*b=e*a*e^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=e*b*e^-1=a^-1*b,c*d=d*c,e*c*e^-1=a^2*c,e*d*e^-1=d^3>;
// generators/relations