metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊2D9, C72⋊2C2, C9⋊1SD16, C24.4S3, C18.2D4, C2.4D36, C4.9D18, C6.2D12, D36.1C2, C12.41D6, Dic18⋊1C2, C36.9C22, C3.(C24⋊C2), SmallGroup(144,7)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C72⋊C2
G = < a,b | a72=b2=1, bab=a35 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(2 36)(3 71)(4 34)(5 69)(6 32)(7 67)(8 30)(9 65)(10 28)(11 63)(12 26)(13 61)(14 24)(15 59)(16 22)(17 57)(18 20)(19 55)(21 53)(23 51)(25 49)(27 47)(29 45)(31 43)(33 41)(35 39)(38 72)(40 70)(42 68)(44 66)(46 64)(48 62)(50 60)(52 58)(54 56)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,36)(3,71)(4,34)(5,69)(6,32)(7,67)(8,30)(9,65)(10,28)(11,63)(12,26)(13,61)(14,24)(15,59)(16,22)(17,57)(18,20)(19,55)(21,53)(23,51)(25,49)(27,47)(29,45)(31,43)(33,41)(35,39)(38,72)(40,70)(42,68)(44,66)(46,64)(48,62)(50,60)(52,58)(54,56)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,36)(3,71)(4,34)(5,69)(6,32)(7,67)(8,30)(9,65)(10,28)(11,63)(12,26)(13,61)(14,24)(15,59)(16,22)(17,57)(18,20)(19,55)(21,53)(23,51)(25,49)(27,47)(29,45)(31,43)(33,41)(35,39)(38,72)(40,70)(42,68)(44,66)(46,64)(48,62)(50,60)(52,58)(54,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(2,36),(3,71),(4,34),(5,69),(6,32),(7,67),(8,30),(9,65),(10,28),(11,63),(12,26),(13,61),(14,24),(15,59),(16,22),(17,57),(18,20),(19,55),(21,53),(23,51),(25,49),(27,47),(29,45),(31,43),(33,41),(35,39),(38,72),(40,70),(42,68),(44,66),(46,64),(48,62),(50,60),(52,58),(54,56)]])
C72⋊C2 is a maximal subgroup of
D72⋊7C2 C8⋊D18 C8.D18 D8⋊D9 SD16×D9 SD16⋊3D9 Q16⋊D9 C216⋊C2 D36.S3 C6.D36 C72⋊2C6 C24⋊D9
C72⋊C2 is a maximal quotient of
C36.45D4 C8⋊Dic9 C2.D72 C216⋊C2 D36.S3 C6.D36 C24⋊D9
39 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 6 | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 18A | 18B | 18C | 24A | 24B | 24C | 24D | 36A | ··· | 36F | 72A | ··· | 72L |
order | 1 | 2 | 2 | 3 | 4 | 4 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 36 | 2 | 2 | 36 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | SD16 | D9 | D12 | D18 | C24⋊C2 | D36 | C72⋊C2 |
kernel | C72⋊C2 | C72 | Dic18 | D36 | C24 | C18 | C12 | C9 | C8 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 4 | 6 | 12 |
Matrix representation of C72⋊C2 ►in GL2(𝔽73) generated by
68 | 14 |
59 | 54 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(73))| [68,59,14,54],[0,1,1,0] >;
C72⋊C2 in GAP, Magma, Sage, TeX
C_{72}\rtimes C_2
% in TeX
G:=Group("C72:C2");
// GroupNames label
G:=SmallGroup(144,7);
// by ID
G=gap.SmallGroup(144,7);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,31,218,50,2404,208,3461]);
// Polycyclic
G:=Group<a,b|a^72=b^2=1,b*a*b=a^35>;
// generators/relations
Export